Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data
<p>Location of the test area. (<b>a</b>) location of Changping District in Beijing; (<b>b</b>) image of test area acquired by unmanned aerial vehicle (UAV).</p> "> Figure 2
<p>Experimental design. ZM175: winter-wheat variety Zhongmai 175; J9843: winter-wheat variety Jingmai 9843. N1, N2, N3, and N4 represent nitrogen treatments of 0, 195, 390, and 780 kg/ha, respectively.</p> "> Figure 3
<p>Relationship between ground-measured values of AGB (kg/m<sup>2</sup>) and LAI (m<sup>2</sup>/m<sup>2</sup>) in different growth stages of winter wheat and the values predicted based on vegetation indices (VIs) and stepwise regression (SWR): (<b>a</b>) AGB (jointing stage); (<b>b</b>) AGB (flagging stage); (<b>c</b>) AGB (flowering stage); (<b>d</b>) AGB (filling stage); (<b>e</b>) LAI (jointing stage); (<b>f</b>) LAI (flagging stage); (<b>g</b>) LAI (flowering stage); and (<b>h</b>) LAI (filling stage). <span class="html-italic">R<sup>2</sup></span>: coefficient of determination; RMSE: root-mean-square error; NRMSE: normalized RMSE.</p> "> Figure 4
<p>Relationship between ground-measured values of AGB (kg/m<sup>2</sup>) and LAI (m<sup>2</sup>/m<sup>2</sup>) in different growth stages of winter wheat and the values predicted based on VIs and PLSR: (<b>a</b>) AGB (jointing stage); (<b>b</b>) AGB (flagging stage); (<b>c</b>) AGB (flowering stage); (<b>d</b>) AGB (filling stage); (<b>e</b>) LAI (jointing stage); (<b>f</b>) LAI (flagging stage); (<b>g</b>) LAI (flowering stage); and (<b>h</b>) LAI (filling stage).</p> "> Figure 5
<p>Relationship between ground-measured values of AGB (kg/m<sup>2</sup>) and LAI (m<sup>2</sup>/m<sup>2</sup>) in different growth stages of winter wheat and the values based on a combination of VIs and red-edge parameters (RPs) and SWR: (<b>a</b>) AGB (jointing stage); (<b>b</b>) AGB (flagging stage); (<b>c</b>) AGB (flowering stage); (<b>d</b>) AGB (filling stage); (<b>e</b>) LAI (jointing stage); (<b>f</b>) LAI (flagging stage); (<b>g</b>) LAI (flowering stage); (<b>h</b>) LAI (filling stage).</p> "> Figure 6
<p>Relationship between ground-measured values of AGB (kg/m<sup>2</sup>) and LAI (m<sup>2</sup>/m<sup>2</sup>) in different growth stages of winter wheat and the values predicted based on a combination of VIs and RPs and PLSR: (<b>a</b>) AGB (jointing stage); (<b>b</b>) AGB (flagging stage); (<b>c</b>) AGB (flowering stage); (<b>d</b>) AGB (filling stage); (<b>e</b>) LAI (jointing stage); (<b>f</b>) LAI (flagging stage); (<b>g</b>) LAI (flowering stage); (<b>h</b>) LAI (filling stage).</p> "> Figure 7
<p>Maps showing the distribution of the estimated values of AGB (kg/m<sup>2</sup>) in the 48 study plots obtained using a combination of VIs and RPs and using the PLSR method. (<b>a</b>) jointing stage; (<b>b</b>) flagging stage; (<b>c</b>) flowering stage.</p> "> Figure 8
<p>Maps showing the distribution of the estimated values of LAI (m<sup>2</sup>/m<sup>2</sup>) in the 48 study plots obtained using a combination of VIs and RPs and using the PLSR method. (<b>a</b>) jointing stage; (<b>b</b>) flagging stage; (<b>c</b>) flowering stage.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Experimental Design
2.2. Ground Data Acquisition and Processing
2.2.1. Calculation of Leaf Area Index (LAI)
2.2.2. Calculation of Above-Ground Biomass (AGB)
2.3. Acquisition and Processing of UAV-Based Hyperspectral Data
2.4. Selection of Vegetation Indices and Red-Edge Parameters
2.4.1. Selection of Vegetation Indices
2.4.2. Selection of Red-Edge Parameters
2.4.3. Analysis Methods
2.4.4. Accuracy Evaluation
3. Results and Analysis
3.1. Correlation Analysis between Vegetation Indices and Red-Edge Parameters and AGB and the LAI
3.2. Relationship between Vegetation Indices and Red-Edge Parameters and AGB and LAI
3.2.1. Estimation of AGB and LAI Using Vegetation Indices
3.2.2. Estimation of AGB and LAI Using Red-Edge Parameters
3.2.3. Estimation of AGB and LAI Using Combinations of Vegetation Indices and Red-Edge Parameters
3.3. Estimating AGB and LAI Using Vegetation Indices and Red-Edge Parameters Combined with SWR and PLSR
3.4. Construction of Spatial Distribution Map of AGB and LAI
4. Discussion
4.1. Estimation of AGB and LAI Based on Vegetation Indices
4.2. Estimation of AGB and LAI Based on Red-Edge Parameters
4.3. Estimation of AGB and LAI Based on Vegetation Indices and Red-Edge Parameters
4.4. AGB and LAI Estimation Performance of Regression Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, B.; Pei, Z. Definition of crop condition and crop monitoring using remote sensing. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 1999, 15, 214–218. [Google Scholar]
- Li, X.; Zhang, Y.; Luo, J.; Jin, X.; Xu, Y.; Yang, W. Quantifification winter wheat LAI with HJ-1CCD image features over multiple growing seasons. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 104–112. [Google Scholar] [CrossRef]
- Liu, B.; Asseng, S.; Wang, A.; Wang, S.; Tang, L.; Cao, W.; Zhu, Y.; Liu, L. Modelling the effects of post-heading heat stress on biomass growth of winter wheat. Agric. For. Meteorol. 2017, 247, 476–490. [Google Scholar] [CrossRef]
- Huang, J.; Sedano, F.; Huang, Y.; Ma, H.; Li, X.; Liang, S.; Tian, L.; Zhang, X.; Fan, J.; Wu, W. Assimilating a synthetic Kalman fifilter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Launay, M.; Guerif, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agric. Ecosyst. Environ. 2005, 111, 321–339. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Jin, X.; Yuan, H.; Li, Z.; Zhou, C.; Yang, G.; Tian, Q. A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera. Remote Sens. 2018, 10, 1138. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C.; Darvishzadeh, R.; Immitzer, M.; Schlerf, M.; Skidmore, A.; le Maire, G. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Galvão, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sens. Environ. 2005, 94, 523–534. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflflectance data: Principles and validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Li, W.; Weiss, M.; Waldner, F.; Defourny, P.; Demarez, V.; Morin, D.; Hagolle, O.; Baret, F. A generic algorithm to estimate LAI, FAPAR and FCOVER variables from SPOT4_HRVIR and landsat sensors: Evaluation of the consistency and comparison with ground measurements. Remote Sens. 2015, 7, 15494–15516. [Google Scholar] [CrossRef] [Green Version]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S.; et al. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J. Photogramm. Remote Sens. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Zaman-Allah, M.; Vergara, O.; Araus, J.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.; Hornero, A.; Albà, A.; Das, B.; Craufurd, P.; et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods. 2015, 11, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Everaerts, J. The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping. Remote Sens. Spat. Inf. Sci. 2008, 144, 1187–1191. [Google Scholar]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Jakob, G.; Johanna, L.; Wilhelm, C. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sens. 2014, 6, 10335–10355. [Google Scholar]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote Sens. 2018, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, K.; Obata, K.; Yoshioka, H. Derivation and approximation of soil isoline equations in the red–near-infrared reflflectance subspace. J. Appl. Remote Sens. 2014, 8, 083621. [Google Scholar] [CrossRef] [Green Version]
- Koetz, B.; Baret, F.; Poilvé, H.; Hill, J. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 2005, 95, 115–124. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Osborne, S.L.; Schepers, J.S.; Francis, D.D.; Schlemmer, M.R. Crop ecology management & quality-use of spectral radiance to estimate in-season biomass and grain yield in nitrogen- and water-stressed corn. Crop Sci. 2002, 42, 165–171. [Google Scholar]
- Serrano, L.; Filella, I.; Peñuelas, J. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci. 2000, 40, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Smith, R.B.; Pauw, E.D. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Ma, B.L.; Dwyer, L.M.; Costa, C.; Cober, E.R.; Morrison, M.J. Early prediction of soybean yield from canopy reflectance measurements. Agron. J. 2001, 93, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Feng, H.; Yang, G.; Li, Z. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens. 2018, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Koppe, W.; Gnyp, M.L.; Hennig, S.D.; Li, F.; Miao, Y.; Chen, X.; Jia, L.; Bareth, G. Multi-temporal hyperspectral and radar remote sensing for estimating winter wheat biomass in the north China plain. Photogramm. Fernerkund. Geoinf. 2012, 18, 281–298. [Google Scholar] [CrossRef]
- Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Lan, Y.; Zhao, C. Combined Multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef] [Green Version]
- Bareth, G.; Aasen, H.; Bendig, J.; Gnyp, L.; Bolten, A.; Jung, A.; Michels, R.; Soukkamäki, J. Low-weight and UAV-based Hyperspectral Full-frame Cameras for Monitoring Crops: Spectral Comparison with Portable Spectroradiometer Measurements. Photogramm. Fernerkund. Geoinf. 2015, 1, 69–79. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Lucieer, A.; Malenovský, Z.; Veness, T.; Wallace, L. HyperUAS-Imaging spectroscopy from a multirotor unmanned aircraft system. J. Field Robot. 2014, 31, 571–590. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Lucieer, A.; Wallace, L. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE. Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Rama Rao, N.; Garg, P.K.; Ghosh, S.K.; Dadhwal, V.K. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery. J. Agric. Sci. 2008, 146, 65–75. [Google Scholar] [CrossRef]
- Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Blackburn, G.A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E. Ratio analysis of reflflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Taskos, D.; Tsadilas, C.; Christofifides, C.; Tsadila, E.; Schepers, J.S. Relation of ground-sensor canopy reflflectance to biomass production and grape color in two merlot vineyards. Am. J. Enol. Vitic. 2006, 57, 415–422. [Google Scholar]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Penuelas, J.; Isla, R.; Filella, I.; Araus, J. Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Sci. 1997, 37, 198–202. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Major, D.J. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. Symp. Remote Sens. Geosci. Remote Sens. Symp. 1989, 3, 1355–1358. [Google Scholar]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y.U. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Merton, R.; Huntington, J. Early Simulation Results of the Aries-1 Satellite Sensor for Multi-Temporal Vegetation Research Derived from Aviris. In Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 9–11 February 1999; pp. 1–10. [Google Scholar]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E. Angular dependence of maize and sugar beet VIs from directional CHRIS/Proba data. Cuore. 2005, 5–9. [Google Scholar]
- Dawson, T.P.; Curran, P.J. Technical note a new technique for interpolating the reflectance red edge position. Int. J. Remote Sens. 1998, 19, 2133–2139. [Google Scholar] [CrossRef]
- Feng, W.; Zhu, Y.; Yao, X.; Tian, Y.; Cao, W.; Guo, T. Monitoring nitrogen accumulation in wheat leaf with red edge characteristics parameters. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2009, 25, 194–201. [Google Scholar]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. Lai and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. Isprs J. Photogramm. Remote Sens. 2008, 63, 409–426. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Viña, A.; Arkebauer, T.; Rundquist, D. Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Yang, G.; Yu, H.; Xu, B.; Zhao, X.; Dong, J.; Ma, Y. Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remote sensing. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2016, 32, 113–120. [Google Scholar]
- Curran, P.J.; Dungan, J.L.; Macler, B.A.; Plummer, S.E. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sens. Environ. 1991, 35, 69–76. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentine l-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Quan, X.; He, B.; Yebra, M.; Yin, C.; Liao, Z.; Zhang, X.; Li, X. A radiative transfer model-based method for the estimation of grassland aboveground biomass. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 159–168. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.C.; Li, Z.H.; Wang, Y.J.; Feng, H.K.; Xu, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Zhao, J.; Xu, X.; Liang, D.; Yang, G.; Feng, H.; Yang, H.; Wang, Y.; Chen, g.; Wei, P. Hyperspectral-based estimation of leaf nitrogen content in corn using optimal selection of multiple spectral variables. Sensors 2019, 19, 2898. [Google Scholar] [CrossRef] [Green Version]
Country of Origin | Germany |
---|---|
Dimensions | 195 mm × 67 mm × 60 mm |
Weight | 470 kg |
Spectral range | 450–950 nm |
Number of channels | 125 |
Spectral sampling interval | 4 nm |
Vegetation Indices | Definition | References |
---|---|---|
PBI (plant biochemical index) | R810/R560 | [39] |
LCI (linear combination index) | (R850 − R710)/(R850 + R670)1/2 | [40] |
PSSR (pigment-specific simple ratio) | R800/R500 | [41] |
RARS (ratio analysis of reflectance spectra) | R760/R500 | [42] |
WDRVI (modified wide dynamic range vegetation index) | (0.1 × R800 − R670)/(0.1 × R800 + R670) | [43] |
PSND (pigment-specific normalized difference) | (R800 − R470)/(R800 + R470) | [41] |
MSR (modified simple ratio index) | (R800/R760 − 1)/(R800/R670 + 1)1/2 | [44] |
NDVI (normalized difference vegetation index) | (R800 − R680)/(R800 + R680) | [45] |
SR (simple ratio vegetation index) | R750/R550 | [46] |
PSRI (plant senescence reflectance index) | (R680 − R500)/R750 | [47] |
NPCI (normalized pigment chlorophyll ratio index) | (R670 − R460)/(R670 + R460) | [48] |
GI (greenness index) | R554/R677 | [49] |
OSAVI (optimized soil adjusted vegetation index) | 1.16×(R800 − R670)/(R800 + R670 + 0.16) | [50] |
RDVI (renormalized difference vegetation index) | (R800 − R670)/(R800 + R670)1/2 | [51] |
RVSI (red-edge vegetation stress index) | [(R712 + R752)/2] − R732 | [52] |
EVI2 (two-band enhanced vegetation index) | 2.5 × (R800 − R670)/(R800 + 2.4 × R670 + 1) | [53] |
TCARI (transformed chlorophyll absorption ratio index) | 3 × [(R700 − R670) − 0.2 × (R700 − R550)(R700/R670)] | [54] |
SPVI (spectral polygon vegetation index) | 0.4 × [3.7(R800 − R670) − 1.2 × |R530 − R670|] | [55] |
TVI (triangular vegetation index) | 0.5 × [120(R750 − R550) − 200 × (R670 − R550)] | [26] |
MCARI (modified chlorophyll absorption ratio index) | ((R700 − R670) − 0.2 × (R700 − R550))(R700/R670) | [54] |
Spectral Parameter | LAI | AGB | |||||||
---|---|---|---|---|---|---|---|---|---|
Jointing | Flagging | Flowering | Filling | Jointing | Flagging | Flowering | Filling | ||
VI | PBI | 0.713 | 0.722 | 0.828 | 0.826 | 0.708 | 0.761 | 0.835 | 0.700 |
LCI | 0.695 | 0.736 | 0.776 | 0.817 | 0.672 | 0.784 | 0.772 | 0.703 | |
PSSR | 0.683 | 0.731 | 0.805 | 0.809 | 0.671 | 0.748 | 0.819 | 0.681 | |
RARS | 0.675 | 0.725 | 0.800 | 0.806 | 0.662 | 0.745 | 0.818 | 0.677 | |
WDRVI | 0.669 | 0.717 | 0.768 | 0.812 | 0.640 | 0.766 | 0.784 | 0.679 | |
PSND | 0.668 | 0.692 | 0.765 | 0.781 | 0.644 | 0.736 | 0.764 | 0.670 | |
MSR | 0.664 | 0.725 | 0.781 | 0.812 | 0.639 | 0.764 | 0.800 | 0.680 | |
NDVI | 0.654 | 0.696 | 0.721 | 0.776 | 0.621 | 0.759 | 0.725 | 0.660 | |
SR | 0.650 | 0.730 | 0.797 | 0.809 | 0.631 | 0.754 | 0.820 | 0.676 | |
PSRI | −0.632 | −0.682 | −0.648 | −0.741 | −0.593 | −0.767 | −0.641 | −0.624 | |
NPCI | −0.622 | −0.708 | −0.716 | −0.800 | −0.578 | −0.752 | −0.748 | −0.666 | |
GI | 0.529 | 0.674 | 0.671 | 0.748 | 0.484 | 0.705 | 0.703 | 0.608 | |
OSAVI | 0.494 | 0.683 | 0.757 | 0.775 | 0.441 | 0.738 | 0.774 | 0.677 | |
RDVI | 0.416 | 0.655 | 0.764 | 0.771 | 0.365 | 0.703 | 0.785 | 0.680 | |
RVSI | 0.364 | 0.203 | 0.338 | −0.226 | 0.407 | 0.138 | 0.253 | −0.306 | |
EVI2 | 0.348 | 0.642 | 0.769 | 0.770 | 0.295 | 0.686 | 0.795 | 0.684 | |
TCARI | −0.278 | −0.367 | 0.123 | 0.026 | −0.309 | −0.367 | 0.202 | 0.067 | |
SPVI | 0.248 | 0.596 | 0.769 | 0.745 | 0.201 | 0.632 | 0.798 | 0.678 | |
TVI | 0.201 | 0.508 | 0.710 | 0.719 | 0.150 | 0.546 | 0.748 | 0.641 | |
MCARI | 0.064 | 0.013 | 0.398 | 0.421 | 0.013 | 0.051 | 0.485 | 0.376 | |
RP | REP | 0.680 | 0.445 | 0.511 | 0.664 | 0.696 | 0.454 | 0.473 | 0.593 |
Dr | 0.273 | 0.579 | 0.766 | 0.766 | 0.224 | 0.628 | 0.795 | 0.701 | |
SDr | 0.110 | 0.562 | 0.751 | 0.744 | 0.151 | 0.602 | 0.786 | 0.670 | |
Drmin | −0.493 | −0.532 | −0.217 | −0.404 | −0.501 | −0.542 | −0.133 | −0.243 | |
Dr/Drmin | 0.645 | 0.688 | 0.579 | 0.809 | 0.693 | 0.725 | 0.536 | 0.651 |
Growth Stage | Growth Parameter | Optimal VI | Modeling | Validation | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | NRMSE (%) | R2 | RMSE | NRMSE (%) | |||
Jointing | AGB | PBI | 0.47 | 0.05 | 20.54 | 0.60 | 0.04 | 14.22 |
LAI | PBI | 0.55 | 0.62 | 17.65 | 0.62 | 0.57 | 14.99 | |
Flagging | AGB | LCI | 0.61 | 0.10 | 18.86 | 0.67 | 0.08 | 14.76 |
LAI | LCI | 0.54 | 1.13 | 24.75 | 0.71 | 0.63 | 18.41 | |
Flowering | AGB | PBI | 0.70 | 0.11 | 14.19 | 0.72 | 0.09 | 12.02 |
LAI | PBI | 0.65 | 0.72 | 20.76 | 0.77 | 0.48 | 16.59 | |
Filling | AGB | LCI | 0.45 | 0.21 | 19.30 | 0.65 | 0.15 | 14.18 |
LAI | PBI | 0.63 | 0.56 | 32.55 | 0.78 | 0.34 | 25.90 |
Growth Stage | Growth Parameter | Optimal RP | Modeling | Validation | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | NRMSE (%) | R2 | RMSE | NRMSE (%) | |||
Jointing | AGB | REP | 0.49 | 0.06 | 22.57 | 0.45 | 0.04 | 16.87 |
LAI | REP | 0.57 | 0.61 | 17.24 | 0.41 | 0.72 | 18.74 | |
Flagging | AGB | Dr/Drmin | 0.56 | 0.10 | 20.05 | 0.50 | 0.09 | 18.33 |
LAI | Dr/Drmin | 0.51 | 1.16 | 25.37 | 0.54 | 0.80 | 23.29 | |
Flowering | AGB | Dr | 0.62 | 0.13 | 16.04 | 0.70 | 0.10 | 12.46 |
LAI | Dr | 0.55 | 0.82 | 23.46 | 0.68 | 0.58 | 19.81 | |
Filling | AGB | Dr | 0.45 | 0.20 | 19.29 | 0.48 | 0.19 | 17.32 |
LAI | Dr/Drmin | 0.66 | 0.53 | 31.09 | 0.58 | 0.48 | 36.11 |
Growth Stage | Growth Parameter | Optimal VI, RP | Modeling | Validation | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | NRMSE (%) | R2 | RMSE | NRMSE (%) | |||
Jointing | AGB | PBI, REP | 0.52 | 0.05 | 19.46 | 0.58 | 0.04 | 14.78 |
LAI | PBI, REP | 0.61 | 0.58 | 16.42 | 0.56 | 0.82 | 21.34 | |
Flagging | AGB | LCI, Dr/Drmin | 0.62 | 0.09 | 18.65 | 0.63 | 0.09 | 17.02 |
LAI | LCI, Dr/Drmin | 0.55 | 1.11 | 24.33 | 0.66 | 1.20 | 34.76 | |
Flowering | AGB | PBI, Dr | 0.71 | 0.10 | 14.06 | 0.73 | 0.11 | 13.84 |
LAI | PBI, Dr | 0.65 | 0.72 | 20.72 | 0.77 | 0.55 | 18.80 | |
Filling | AGB | LCI, Dr | 0.50 | 0.18 | 18.42 | 0.53 | 0.19 | 17.91 |
LAI | PBI, Dr/Drmin | 0.69 | 0.51 | 29.94 | 0.72 | 0.40 | 29.74 |
Method | Growth Stage | AGB | LAI | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (kg/m2) | NRMSE (%) | R2 | RMSE | NRMSE (%) | ||
SWR | Jointing | 0.55 | 0.05 | 18.85 | 0.58 | 0.60 | 17.11 |
Flagging | 0.68 | 0.09 | 17.02 | 0.55 | 1.11 | 24.41 | |
Flowering | 0.74 | 0.11 | 13.32 | 0.70 | 0.66 | 19.04 | |
Filling | 0.55 | 0.19 | 17.53 | 0.68 | 0.52 | 30.21 | |
PLSR | Jointing | 0.56 | 0.05 | 18.58 | 0.61 | 0.58 | 16.48 |
Flagging | 0.69 | 0.09 | 16.74 | 0.64 | 1.00 | 21.92 | |
Flowering | 0.78 | 0.10 | 12.26 | 0.71 | 0.65 | 18.76 | |
Filling | 0.60 | 0.18 | 16.53 | 0.75 | 0.50 | 26.81 |
Method | Growth Stage | AGB | LAI | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (kg/m2) | NRMSE (%) | R2 | RMSE | NRMSE (%) | ||
SWR | Jointing | 0.57 | 0.05 | 18.47 | 0.62 | 0.57 | 16.12 |
Flagging | 0.70 | 0.08 | 16.38 | 0.64 | 1.00 | 21.82 | |
Flowering | 0.77 | 0.10 | 12.41 | 0.72 | 0.65 | 18.50 | |
Filling | 0.60 | 0.18 | 16.51 | 0.71 | 0.49 | 28.63 | |
PLSR | Jointing | 0.59 | 0.05 | 17.99 | 0.64 | 0.56 | 15.76 |
Flagging | 0.72 | 0.08 | 16.02 | 0.67 | 0.96 | 21.07 | |
Flowering | 0.80 | 0.09 | 11.67 | 0.75 | 0.61 | 17.58 | |
Filling | 0.75 | 0.15 | 13.11 | 0.76 | 0.45 | 26.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Feng, H.; Xu, L.; Miao, M.; Long, H.; Yue, J.; Li, Z.; Yang, G.; Yang, X.; Fan, L. Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data. Sensors 2020, 20, 1296. https://doi.org/10.3390/s20051296
Tao H, Feng H, Xu L, Miao M, Long H, Yue J, Li Z, Yang G, Yang X, Fan L. Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data. Sensors. 2020; 20(5):1296. https://doi.org/10.3390/s20051296
Chicago/Turabian StyleTao, Huilin, Haikuan Feng, Liangji Xu, Mengke Miao, Huiling Long, Jibo Yue, Zhenhai Li, Guijun Yang, Xiaodong Yang, and Lingling Fan. 2020. "Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data" Sensors 20, no. 5: 1296. https://doi.org/10.3390/s20051296