Review of Non-Invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone
<p>Non-invasive glucose sensing techniques.</p> "> Figure 2
<p>Non-Invasive glucose measurement techniques based on glucose and tissue/blood properties.</p> "> Figure 3
<p>Skin tissue layers.</p> "> Figure 4
<p>Types of Interactions between Light (Photons) and Tissue.</p> "> Figure 5
<p>A simplified schematic illustrating transmission absorption spectroscopy.</p> "> Figure 6
<p>A simplified schematic illustrating polarimeter.</p> "> Figure 7
<p>A simplified schematic illustrating Raman spectroscopy.</p> "> Figure 8
<p>A simplified schematic illustrating scattering spectroscopy of a (<b>a</b>) low glucose concentration tissue sample versus a (<b>b</b>) high glucose concentration tissue sample.</p> "> Figure 9
<p>A simplified schematic illustrating optical coherence tomography of tissue.</p> "> Figure 10
<p>(<b>a</b>) A simplified schematic illustrating tissue impedance spectroscopy, (<b>b</b>) An electrical model for a single red blood cell.</p> "> Figure 11
<p>A simplified schematic illustrating a reflection mode EM measurement.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Glucose Transport in the Body
2.2. Skin Tissue Layers
2.3. Glucose Storage in the Body
2.4. Ketogenesis and Production of Ketones
2.5. Influence of Diabetes on Ketogenesis Process
3. Non-Invasive Glucose Sensing Methods Based on Intrinsic Properties of Glucose
3.1. Mid-Infrared and Near-Infrared Spectroscopy
3.1.1. Absorption of Light by Water
3.1.2. Absorption of Light by Blood Components and Tissue
3.1.3. Scattering of Light by Blood Components and Tissue
3.1.4. Temperature Fluctuation in Tissue
3.2. Polarimetry
3.2.1. Variation in Corneal Birefringence of the Eye
3.2.2. Presence of Active Components within the Aqueous Humor
3.2.3. Lag Time between Blood Glucose Measurements in Blood Plasma vs. Aqueous Humor
3.2.4. Temperature Fluctuation
3.3. Raman Spectroscopy
3.3.1. Water and Other Blood Constituents
3.3.2. Tissue Variation between Individuals
- Signal filtering applied by multivariate analysis of Raman spectra from multiple blood/tissue components (as mentioned in Section 3.3.1) and data calibration applied to a glucose prediction model using a fraction of the total data followed by validation of the rest of the data as independent test data [102,104,105,106].
- Normalization of glucose Raman intensity peak with respect to a more stable reference within the body, such as hemoglobin. Hemoglobin concentration does not vary significantly between individuals [28]. Consequently, the relative Raman intensity of glucose is the glucose Raman measurement normalized to the Raman fingerprint of hemoglobin at 1549 cm−1.
- Selection of a test site with a nearly transparent epidermis and a high density of blood vessels. The nail fold or volar side of the fingertip are good examples that minimize signals from tissue components and maximize Raman spectra from blood components [104,107]. Selecting a measurement site with a high density of blood vessels minimizes the time lag between actual blood glucose measurements vs. glucose within the tissue.
- Tissue modulation optimizes the signal originating from blood components vs. tissue components [106].
- Use of an actuator to apply controllable pressure to the measurement site in order to improve reproducibility [107].
3.3.3. Fluorescence Signal due to Presence of Protein
3.3.4. Inherently Weak Raman Signals
4. Non-Invasive Glucose Sensing Methods Based on Tissue Properties
4.1. Scattering and Occlusion Spectroscopy
4.1.1. Blood Protein Variation between Individuals
4.1.2. Blood Osmolality Variation between Individuals
4.1.3. Variation in Skin Scattering Coefficient due to Age and Sex
4.2. Optical Coherence Tomography
4.2.1. Tissue Heterogeneity & Scattering of Light by Tissue
4.2.2. Patient Motion Artifacts
4.2.3. Lag Time between Blood Glucose Measurements in Plasma vs. Interstitial Fluid
4.2.4. Temperature Fluctuation in Tissue
4.3. Bioimpedance Spectroscopy
4.3.1. Tissue Heterogeneity and Variation in Red Blood Cell Morphology
4.3.2. Patient Motion Artifacts, Sweat/Humidity and Temperature Fluctuation in Tissue
4.4. Millimeter Wave/Microwave/Ultra-High Frequency wave sensing
4.4.1. Temperature Fluctuation in Tissue
4.4.2. Patient Motion Artifact, Sweat/Humidity, Variation in tissue hydration state, Variation in Hematocrit
5. Non-Invasive Glucose Sensing Based on Breath Acetone Analysis
- No insulin injection
- No glucose ingestion
- No fasting
- Insulin injection
- No glucose ingestion
- No fasting
- Insulin level
- Biological parameters (human age, human gender)
- Human subjects’ diet
- Intensive exercise (increases breath acetone)
- Alcohol consumption (increases breath acetone)
- Diseases/Illnesses of patients/subjects. (Ex. individuals with epilepsy exhibit higher acetone levels [218])
- Type of diabetes in human subjects (T1D, T2D, healthy) since they may have different metabolic pathways
- The pressure and temperature of the air that human subjects breathe into during breath acetone measurements
- Sampling times (Ex. time after a meal, after fasting, after insulin injection or after glucose consumption) and time of day
- The sampling size should be big enough to generate valid conclusions
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jang, C.; Park, J.-K.; Lee, H.-J.; Yun, G.-H.; Yook, J.-G. Temperature-corrected fluidic glucose sensor based on microwave resonator. Sensors 2018, 18, 3850. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef]
- Rowley, W.R.; Bezold, C.; Arikan, Y.; Byrne, E.; Krohe, S. Diabetes 2030: Insights from yesterday, today, and future trends. Popul. Health Manag. 2017, 20, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Roglic, G.; World Health Organization (Eds.) Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016; ISBN 978-92-4-156525-7. [Google Scholar]
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNichols, R.J.; Coté, G.L. Optical glucose sensing in biological fluids: An overview. J. Biomed. Opt. 2000, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, A.I.; Muthuchamy, N.; Komathi, S.; Lee, K.-P. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosens. Bioelectron. 2016, 84, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, A.I.; Komathi, S.; Muthuchamy, N.; Lee, K.-P.; Whitcombe, M.J.; Lakshmi, D.; Sai-Anand, G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog. Polym. Sci. 2019, 88, 1–129. [Google Scholar]
- Atchudan, R.; Muthuchamy, N.; Edison, T.N.J.I.; Perumal, S.; Vinodh, R.; Park, K.H.; Lee, Y.R. An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles. Biosens. Bioelectron. 2019, 126, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Komathi, S.; Gopalan, A.I.; Muthuchamy, N.; Lee, K.P. Polyaniline nanoflowers grafted onto nanodiamonds via a soft template-guided secondary nucleation process for high-performance glucose sensing. RSC Adv. 2017, 7, 15342–15351. [Google Scholar] [CrossRef] [Green Version]
- Muthuchamy, N.; Gopalan, A.; Lee, K.-P. Highly selective non-enzymatic electrochemical sensor based on a titanium dioxide nanowire–poly(3-aminophenyl boronic acid)–gold nanoparticle ternary nanocomposite. RSC Adv. 2018, 8, 2138–2147. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, A.; Øhlckers, P.; Sælid, S.; Jacobsen, M.; Nadeem Akram, M. Review: Non-invasive continuous blood glucose measurement techniques. J. Bioinform. Diabetes 2016, 1, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Clarke, W.L.; Cox, D.; Gonder-Frederick, L.A.; Carter, W.; Pohl, S.L. Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose. Diabetes Care 1987, 10, 622–628. [Google Scholar] [CrossRef]
- Kovatchev, B.P.; Wakeman, C.A.; Breton, M.D.; Kost, G.J.; Louie, R.F.; Tran, N.K.; Klonoff, D.C. Computing the surveillance error grid analysis: Procedure and examples. J. Diabetes Sci. Technol. 2014, 8, 673–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tura, A.; Maran, A.; Pacini, G. Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Res. Clin. Pract. 2007, 77, 16–40. [Google Scholar] [CrossRef] [PubMed]
- Poddar, R.; Andrews, J.T.; Shukla, P.; Sen, P. Non-invasive glucose monitoring techniques: A review and current trends. arXiv 2008, arXiv:0810.5755, 1–47. [Google Scholar]
- Uwadaira, Y.; Ikehata, A. Noninvasive blood glucose measurement. In Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome; Elsevier: Amsterdam, The Netherlands, 2018; pp. 489–504. ISBN 978-0-12-812019-4. [Google Scholar]
- Oliver, N.S.; Toumazou, C.; Cass, A.E.G.; Johnston, D.G. Glucose sensors: A review of current and emerging technology. Diabet. Med. 2009, 26, 197–210. [Google Scholar] [CrossRef]
- Villena Gonzales, W.; Mobashsher, A.; Abbosh, A. The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors 2019, 19, 800. [Google Scholar] [CrossRef] [Green Version]
- Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors 2017, 17, 1866. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Campbell, A.S.; Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 2018, 177, 163–170. [Google Scholar] [CrossRef]
- Vashist, S. Continuous glucose monitoring systems: A review. Diagnostics 2013, 3, 385–412. [Google Scholar] [CrossRef] [Green Version]
- Koschinsky, T.; Heinemann, L. Sensors for glucose monitoring: Technical and clinical aspects. Diabetes Metab. Res. Rev. 2001, 17, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Gal, A.; Mayzel, Y.; Horman, K.; Bahartan, K. Non-invasive glucose monitoring: A review of challenges and recent advances. Curr. Trends Biomed. Eng. Biosci. 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Dean, L. Blood and the cells it contains. In Blood Groups and Red Cell Antigens; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2005. [Google Scholar]
- Zirk, K.; Poetzschke, H. On the suitability of refractometry for the analysis of glucose in blood-derived fluids. Med. Eng. Phys. 2004, 26, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, E.; Tamborlane, W.V. A tale of two compartments: Interstitial versus blood glucose monitoring. Diabetes Technol. Ther. 2009, 11, S-11–S-16. [Google Scholar] [CrossRef]
- Shao, J.; Lin, M.; Li, Y.; Li, X.; Liu, J.; Liang, J.; Yao, H. In vivo blood glucose quantification using raman spectroscopy. PLoS ONE 2012, 7, e48127. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Li, D.; Li, G.; Zhang, Y.; Xu, K.; Lu, L. Modeling and measurement of correlation between blood and interstitial glucose changes. J. Diabetes Res. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cobelli, C.; Schiavon, M.; Dalla Man, C.; Basu, A.; Basu, R. Interstitial fluid glucose is not just a shifted-in-time but a distorted mirror of blood glucose: Insight from an in silico study. Diabetes Technol. Ther. 2016, 18, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Mhaskar, H.N.; Pereverzyev, S.V.; van der Walt, M.D. A deep learning approach to diabetic blood glucose prediction. Front. Appl. Math. Stat. 2017, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Caduff, A.; Talary, M.S.; Zakharov, P. Cutaneous blood perfusion as a perturbing factor for noninvasive glucose monitoring. Diabetes Technol. Ther. 2010, 12, 1–9. [Google Scholar] [CrossRef]
- Larin, K.V.; Motamedi, M.; Ashitkov, T.V.; Esenaliev, R.O. Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: A pilot study. Phys. Med. Biol. 2003, 48, 1371–1390. [Google Scholar] [CrossRef]
- Kolarsick, P.A.J.; Kolarsick, M.A.; Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurses Assoc. 2011, 3, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Groenendaal, W.; von Basum, G.; Schmidt, K.A.; Hilbers, P.A.J.; van Riel, N.A.W. Quantifying the composition of human skin for glucose sensor development. J. Diabetes Sci. Technol. 2010, 4, 1032–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caduff, A.; Ben Ishai, P.; Feldman, Y. Continuous noninvasive glucose monitoring; water as a relevant marker of glucose uptake in vivo. Biophys. Rev. 2019, 11, 1017–1035. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef]
- Aarsland, A.; Chinkes, D.; Wolfe, R.R. Hepatic and whole-body fat synthesis in humans during carbohydrate overfeeding. Am. J. Clin. Nutr. 1997, 65, 1774–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Gill, K.D. Qualitative analysis of ketone bodies in urine. In Basic Concepts in Clinical Biochemistry: A Practical Guide; Springer: Singapore, 2018; pp. 119–122. ISBN 978-981-10-8185-9. [Google Scholar]
- Laffel, L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab. Res. Rev. 1999, 15, 412–426. [Google Scholar] [CrossRef]
- Umpierrez, G.; Korytkowski, M. Diabetic emergencies—Ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nat. Rev. Endocrinol. 2016, 12, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Saasa, V.; Malwela, T.; Beukes, M.; Mokgotho, M.; Liu, C.-P.; Mwakikunga, B. Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 2018, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Zhao, X.; Yin, H.; Wang, Z.; Jiang, C.; Liu, W.; Chen, Z.; Yuan, Y.; Li, Y.; Wang, C. Study of breath acetone and its correlations with blood glucose and blood beta-hydroxybutyrate using an animal model with lab-developed type 1 diabetic rats. RSC Adv. 2015, 5, 71002–71010. [Google Scholar] [CrossRef]
- Jiang, C.; Sun, M.; Wang, Z.; Chen, Z.; Zhao, X.; Yuan, Y.; Li, Y.; Wang, C. A portable real-time ringdown breath acetone analyzer: Toward potential diabetic screening and management. Sensors 2016, 16, 1199. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, Y.; Lu, X.; Huang, Y.; Liu, Y.; Cheng, S.; Duan, Y. A cross-sectional study of breath acetone based on diabetic metabolic disorders. J. Breath Res. 2015, 9, 016005. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Chen, Z.; Gong, Z.; Zhao, X.; Jiang, C.; Yuan, Y.; Wang, Z.; Li, Y.; Wang, C. Determination of breath acetone in 149 Type 2 diabetic patients using a ringdown breath-acetone analyzer. Anal. Bioanal. Chem. 2015, 407, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37–R61. [Google Scholar] [CrossRef] [PubMed]
- Boustany, N.N.; Boppart, S.A.; Backman, V. Microscopic imaging and spectroscopy with scattered light. Annu. Rev. Biomed. Eng. 2010, 12, 285–314. [Google Scholar] [CrossRef] [Green Version]
- Madsen, S.J. Physics of photodynamic therapy. In Biomedical Optics in Otorhinolaryngology; Wong, B.J.-F., Ilgner, J., Eds.; Springer: New York, NY, USA, 2016; pp. 287–309. ISBN 978-1-4939-1757-0. [Google Scholar]
- Jonasson, H.; Fredriksson, I.; Bergstrand, S.; Östgren, C.J.; Larsson, M.; Strömberg, T. In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort. J. Biomed. Opt. 2018, 23, 1. [Google Scholar] [CrossRef] [Green Version]
- So, C.F.; Choi, K.S.; Wong, T.K.; Chung, J.W. Recent advances in noninvasive glucose monitoring. Med. Devices Evid. Res. 2012, 5, 45–52. [Google Scholar]
- Shaw, R.A.; Mantsch, H.H. Infrared spectroscopy in clinical and diagnostic analysis. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 83–102. ISBN 978-0-471-97670-7. [Google Scholar]
- Singh, K.; Sandhu, G.; Lark, B.; Sud, S. Molar extinction coefficients of some carbohydrates in aqueous solutions. Pramana 2002, 58, 521–528. [Google Scholar] [CrossRef]
- Wood, M.F.G.; Coté, D.; Vitkin, I.A. Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media. J. Biomed. Opt. 2008, 13, 044037. [Google Scholar] [CrossRef]
- Fuglerud, S.S.; Milenko, K.B.; Ellingsen, R.; Aksnes, A.; Hjelme, D.R. Glucose sensing by absorption spectroscopy using lensed optical fibers. Appl. Opt. 2019, 58, 2456. [Google Scholar] [CrossRef]
- Kozma, B.; Párta, L.; Zalai, D.; Gergely, S.; Salgó, A. A model system and chemometrics to develop near infrared spectroscopic monitoring for Chinese hamster ovary cell cultivations. J. Infrared Spectrosc. 2014, 22, 401–410. [Google Scholar] [CrossRef]
- Yadav, J.; Rani, A.; Singh, V.; Murari, B.M. Near-infrared LED based non-invasive blood glucose sensor. In Proceedings of the 2014 International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 20–21 February 2014; IEEE: Noida, India, 2014; pp. 591–594. [Google Scholar]
- Maruo, K.; Yamada, Y. Near-infrared noninvasive blood glucose prediction without using multivariate analyses: Introduction of imaginary spectra due to scattering change in the skin. J. Biomed. Opt. 2015, 20, 047003. [Google Scholar] [CrossRef] [PubMed]
- Turgul, V.; Kale, I. All-digital 1550 nm optical aqueous glucose solution measurement system. In Proceedings of the 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, Georgia, 5–8 December 2017; IEEE: Batumi, Georgia, 2017; pp. 462–465. [Google Scholar]
- Haaland, D.M.; Robinson, M.R.; Koepp, G.W.; Thomas, E.V.; Eaton, R.P. Reagentless near-infrared determination of glucose in whole blood using multivariate calibration. Appl. Spectrosc. 1992, 46, 1575–1578. [Google Scholar] [CrossRef]
- Vural, N.M.; Yoleri, Y.; Torun, H. On feasibility of near-infrared spectroscopy for noninvasive blood glucose measurements. In Proceedings of the Optical Diagnostics and Sensing XIX: Toward Point-Of-Care Diagnostics, San Francisco, CA, USA, 2–7 February 2019; Coté, G.L., Ed.; SPIE: San Francisco, CA, USA, 2019; p. 29. [Google Scholar]
- Guo, X.; Mandelis, A.; Matvienko, A.; Sivagurunathan, K.; Zinman, B. Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements. J. Phys. Conf. Ser. 2010, 214, 012025. [Google Scholar] [CrossRef]
- Harjunmaa, H.; Kun, S.; Peura, R.A.; Rolls, J.A. Non-Invasive Substance Concentration Measurement Using and Optical Bridge. U.S. Patent 7,003,337, 21 February 2006. [Google Scholar]
- CNOGA Non-Invasive Glucometer (CoG)—Diabetes Self-Management Has never Been Easier. Available online: https://cnogacare.co/products/cog-info/ (accessed on 23 December 2019).
- Pfützner, A.; Strobl, S.; Demircik, F.; Redert, L.; Pfützner, J.; Pfützner, A.H.; Lier, A. Evaluation of a new noninvasive glucose monitoring device by means of standardized meal experiments. J. Diabetes Sci. Technol. 2018, 12, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Segman, Y. (Joseph) Device and method for noninvasive glucose assessment. J. Diabetes Sci. Technol. 2018, 12, 1159–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busher, J.T. Serum albumin and globulin. In Clinical Methods: The History, Physical, and Laboratory Examinations; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; ISBN 978-0-409-90077-4. [Google Scholar]
- Beutler, E.; Waalen, J. The definition of anemia: What is the lower limit of normal of the blood hemoglobin concentration? Blood 2006, 107, 1747–1750. [Google Scholar] [CrossRef] [Green Version]
- Kasahara, R.; Kino, S.; Soyama, S.; Matsuura, Y. Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomed. Opt. Express 2018, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, M.; Sharma, S.; Ramon, H.; Saeys, W. Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. TrAC Trends Anal. Chem. 2015, 67, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Malchoff, C.D.; Shoukri, K.; Landau, J.I.; Buchert, J.M. A novel noninvasive blood glucose monitor. Diabetes Care 2002, 25, 2268–2275. [Google Scholar] [CrossRef] [Green Version]
- Nirala, N.; Periyasamy, R.; Singh, B.K.; Kumar, A. Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine. Biocybern. Biomed. Eng. 2019, 39, 38–51. [Google Scholar] [CrossRef]
- Rogers, J.D.; Radosevich, A.J.; Ji, Y.; Backman, V. Modeling light scattering in tissue as continuous random media using a versatile refractive index correlation function. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 173–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, T.; Liu, X.; Liu, J.; Xu, K. An optimized non-invasive glucose sensing based on scattering and absorption separating using near-infrared spectroscopy. In Proceedings of the Optical Diagnostics and Sensing XIX: Toward Point-of-Care Diagnostics, San Francisco, CA, USA, 2–7 February 2019; Coté, G.L., Ed.; SPIE: San Francisco, CA, USA, 2019; p. 30. [Google Scholar]
- Xu, K.; Liu, J. Absorption and Scattering Effects Separation from Diffuse Spectrum Data and Model Establishment and Concentration Prediction Based Thereon. U.S. Patent 9,551,656, 21 January 2017. [Google Scholar]
- Wan, X.; Li, G.; Zhang, M.; Yan, W.; He, G.; Awelisah, Y.M.; Lin, L. A review on the strategies for reducing the non-linearity caused by scattering on spectrochemical quantitative analysis of complex solutions. Appl. Spectrosc. Rev. 2019, 1–27. [Google Scholar] [CrossRef]
- Tang, W.; Yan, W.; He, G.; Li, G.; Lin, L. Dynamic spectrum nonlinear modeling of VIS & NIR band based on RBF neural network for noninvasive blood component analysis to consider the effects of scattering. Infrared Phys. Technol. 2019, 96, 77–83. [Google Scholar]
- Ghazaryan, A.; Ovsepian, S.V.; Ntziachristos, V. Extended near-infrared optoacoustic spectrometry for sensing physiological concentrations of glucose. Front. Endocrinol. 2018, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Kottmann, J.; Rey, J.; Sigrist, M. Mid-infrared photoacoustic detection of glucose in human skin: Towards non-invasive diagnostics. Sensors 2016, 16, 1663. [Google Scholar] [CrossRef] [Green Version]
- Sim, J.Y.; Ahn, C.-G.; Jeong, E.-J.; Kim, B.K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Sci. Rep. 2018, 8, 1059. [Google Scholar] [CrossRef] [Green Version]
- Wülfert, F.; Kok, W.T.; de Noord, O.E.; Smilde, A.K. Linear techniques to correct for temperature-induced spectral variation in multivariate calibration. Chemom. Intell. Lab. Syst. 2000, 51, 189–200. [Google Scholar] [CrossRef]
- Hayter, G.A.; Bernstein, D.M.; Fennell, M.J.; Love, M.R.; Doniger, K.J.; Zhang, S.; Sloan, M.K.; Cho, H.; Kunich, T.J.; Cole, J.P.; et al. Temperature-Compensated Analyte Monitoring Devices, Systems, and Methods Thereof. U.S. Patent 10,398,363, 22 May 2018. [Google Scholar]
- Al-Hafidh, M.H.; Glidle, A.; Wilson, R.; Kelly, A.E.; Reboud, J.; Cooper, J.M. Multireflection polarimetry in microfluidics. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Lei, Y.; Jia, H.; Xu, X.; Jiang, S. An optimized Drude’s equation for polarization measurement in the visible region and concentrations estimation. IEEE Photonics J. 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Mukherjee, P.; Hagen, N.; Otani, Y. Glucose sensing in the presence of scattering by analyzing a partial Mueller matrix. Optik 2019, 180, 775–781. [Google Scholar] [CrossRef]
- Phan, Q.-H.; Lo, Y.-L. Stokes-Mueller matrix polarimetry system for glucose sensing. Opt. Lasers Eng. 2017, 92, 120–128. [Google Scholar] [CrossRef]
- Stark, C.; Behroozian, R.; Redmer, B.; Fiedler, F.; Müller, S. Real-time compensation method for robust polarimetric determination of glucose in turbid media. Biomed. Opt. Express 2019, 10, 308. [Google Scholar] [CrossRef]
- Winkler, A.M.; Bonnema, G.T.; Barton, J.K. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry. Appl. Opt. 2011, 50, 2719. [Google Scholar] [CrossRef] [PubMed]
- Cote, G.L.; Cameron, B.D. A noninvasive glucose sensor based on polarimetric measurements through the aqueous humor of the eye. In Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues; CRC Press: Boca Raton, FL, USA, 2009; pp. 183–211. [Google Scholar]
- Westphal, P.; Kaltenbach, J.-M.; Wicker, K. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring. Biomed. Opt. Express 2016, 7, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knighton, R.W.; Huang, X.-R. Linear birefringence of the central human cornea. Investig. Ophthalmol. Vis. Sci. 2002, 43, 82–86. [Google Scholar]
- Malik, B.H.; Coté, G.L. Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor. J. Biomed. Opt. 2010, 15, 037012. [Google Scholar] [CrossRef] [Green Version]
- Götzinger, E.; Pircher, M.; Sticker, M.; Fercher, A.F.; Hitzenberger, C.K. Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. J. Biomed. Opt. 2004, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Bueno, J.M.; Vargas-Martín, F. Measurements of the corneal birefringence with a liquid-crystal imaging polariscope. Appl. Opt. 2002, 41, 116. [Google Scholar] [CrossRef]
- Yu, Z.F.; Pirnstill, C.W.; Coté, G.L. Dual-modulation, dual-wavelength, optical polarimetry system for glucose monitoring. J. Biomed. Opt. 2016, 21, 087001. [Google Scholar] [CrossRef]
- Malik, B.H.; Coté, G.L. Real-time dual wavelength polarimetry for glucose sensing. In Optical Diagnostics and Sensing IX; Coté, G.L., Ed.; International Society for Optics and Photonics: San Jose, CA, USA, 2009; p. 718604. [Google Scholar]
- Baba, J.S.; Cameron, B.D.; Theru, S.; Coté, G.L. Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye. J. Biomed. Opt. 2002, 7, 321. [Google Scholar] [CrossRef]
- Purvinis, G.; Cameron, B.D.; Altrogge, D.M. Noninvasive polarimetric-based glucose monitoring: An in vivo study. J. Diabetes Sci. Technol. 2011, 5, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, R. Raman spectroscopy-based sensing of glycated hemoglobin: Critical analysis and future outlook. Postdr. J. 2015, 3, 8–16. [Google Scholar] [CrossRef]
- Alula, M.T.; Mengesha, Z.T.; Mwenesongole, E. Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: A review. Vib. Spectrosc. 2018, 98, 50–63. [Google Scholar] [CrossRef]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2017, 185, 317–335. [Google Scholar] [CrossRef]
- Lundsgaard-Nielsen, S.M.; Pors, A.; Banke, S.O.; Henriksen, J.E.; Hepp, D.K.; Weber, A. Critical-depth Raman spectroscopy enables home-use non-invasive glucose monitoring. PLoS ONE 2018, 13, e0197134. [Google Scholar] [CrossRef] [Green Version]
- Lipson, J.; Bernhardt, J.; Block, U.; Freeman, W.R.; Hofmeister, R.; Hristakeva, M.; Lenosky, T.; McNamara, R.; Petrasek, D.; Veltkamp, D.; et al. Requirements for calibration in noninvasive glucose monitoring by Raman spectroscopy. J. Diabetes Sci. Technol. 2009, 3, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Zang, H.; Sun, H.; Jiao, X.; Wang, K.; Liu, T.C.-Y.; Meng, Y. A noninvasive accurate measurement of blood glucose levels with raman spectroscopy of blood in microvessels. Molecules 2019, 24, 1500. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Mukherjee, S.; Galindo, L.H.; So, P.T.C.; Dasari, R.R.; Khan, U.Z.; Kannan, R.; Upendran, A.; Kang, J.W. Evaluation of accuracy dependence of Raman spectroscopic models on the ratio of calibration and validation points for non-invasive glucose sensing. Anal. Bioanal. Chem. 2018, 410, 6469–6475. [Google Scholar] [CrossRef]
- Pandey, R.; Paidi, S.K.; Valdez, T.A.; Zhang, C.; Spegazzini, N.; Dasari, R.R.; Barman, I. Noninvasive monitoring of blood glucose with raman spectroscopy. Acc. Chem. Res. 2017, 50, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Chaiken, J.; Bussjager, R.J.; Shaheen, G.; Rice, D.; Stehlik, D.; Fayos, J. Instrument for near infrared emission spectroscopic probing of human fingertips in vivo. Rev. Sci. Instrum. 2010, 81, 034301. [Google Scholar] [CrossRef]
- Teresa Montero, M.; Hernández, J.; Estelrich, J. Fluorescence quenching of albumin. A spectrofluorimetric experiment. Biochem. Educ. 1990, 18, 99–101. [Google Scholar] [CrossRef]
- Dieringer, J.A.; McFarland, A.D.; Shah, N.C.; Stuart, D.A.; Whitney, A.V.; Yonzon, C.R.; Young, M.A.; Zhang, X.; Van Duyne, R.P. Introductory lecture: Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discuss 2006, 132, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Willets, K.; Mayer, K. Surface-enhanced Raman scattering (SERS) as a characterization method for metal-organic interactions. In Handbook of Organic Materials for Electronic and Photonic Devices; Elsevier: Amsterdam, The Netherlands, 2019; pp. 529–549. ISBN 978-0-08-102284-9. [Google Scholar]
- Yang, D.; Afroosheh, S.; Lee, J.O.; Cho, H.; Kumar, S.; Siddique, R.H.; Narasimhan, V.; Yoon, Y.-Z.; Zayak, A.T.; Choo, H. Glucose sensing using surface-enhanced raman-mode constraining. Anal. Chem. 2018, 90, 14269–14278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torul, H.; Çiftçi, H.; Dudak, F.C.; Adıgüzel, Y.; Kulah, H.; Boyacı, İ.H.; Tamer, U. Glucose determination based on a two component self-assembled monolayer functionalized surface-enhanced Raman spectroscopy (SERS) probe. Anal. Method. 2014, 6, 5097–5104. [Google Scholar] [CrossRef]
- Jeong, J.W.; Arnob, M.M.P.; Baek, K.-M.; Lee, S.Y.; Shih, W.-C.; Jung, Y.S. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced raman spectroscopy analysis. Adv. Mater. 2016, 28, 8695–8704. [Google Scholar] [CrossRef]
- Larin, K.V.; Eledrisi, M.S.; Motamedi, M.; Esenaliev, R.O. Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects. Diabetes Care 2002, 25, 2263–2267. [Google Scholar] [CrossRef] [Green Version]
- Maier, J.S.; Walker, S.A.; Fantini, S.; Franceschini, M.A.; Gratton, E. Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared. Opt. Lett. 1994, 19, 2062. [Google Scholar] [CrossRef] [Green Version]
- Tuchin, V. Light Scattering Methods and Instruments for Medical Diagnostics. In Tissue Optics; SPIE: Bellingham, WA, USA, 2007; ISBN 978-0-8194-6433-0. [Google Scholar]
- Zhou, Y.; Zeng, N.; Ji, Y.; Li, Y.; Dai, X.; Li, P.; Duan, L.; Ma, H.; He, Y. Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber. J. Biomed. Opt. 2011, 16, 015004. [Google Scholar] [CrossRef]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 85th ed.; CRC Press: Boca Raton, FL, USA, 2005; Volume 85. [Google Scholar]
- Zhang, Y.; Wu, G.; Wei, H.; Guo, Z.; Yang, H.; He, Y.; Xie, S.; Liu, Y. Continuous noninvasive monitoring of changes in human skin optical properties during oral intake of different sugars with optical coherence tomography. Biomed. Opt. Express 2014, 5, 990. [Google Scholar] [CrossRef] [Green Version]
- Khalil, O.S. Non-invasive glucose measurement technologies: An update from 1999 to the dawn of the new millennium. Diabetes Technol. Ther. 2004, 6, 660–697. [Google Scholar] [CrossRef]
- Sun, M.; Chen, N. Non-invasive measurement of blood glucose level by time-resolved transmission spectroscopy: A feasibility study. Opt. Commun. 2012, 285, 1608–1612. [Google Scholar] [CrossRef]
- Abdalsalam, O.; Awouda, A.A. Non-invasive glucose monitoring using scattering spectroscopy. Am. J. Biomed. Eng. 2014, 4, 53–59. [Google Scholar]
- Amir, O.; Weinstein, D.; Zilberman, S.; Less, M.; Perl-Treves, D.; Primack, H.; Weinstein, A.; Gabis, E.; Fikhte, B.; Karasik, A. Continuous noninvasive glucose monitoring technology based on “occlusion spectroscopy”. J. Diabetes Sci. Technol. 2007, 1, 463–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friebel, M.; Helfmann, J.; Meinke, M.C. Influence of osmolarity on the optical properties of human erythrocytes. J. Biomed. Opt. 2010, 15, 055005. [Google Scholar] [CrossRef]
- Fine, I. System and Method for In Vivo Measurement of Biological Parameters. U.S. Patent 8,277,384, 2 October 2012. [Google Scholar]
- Iglesias-Guitian, J.A.; Aliaga, C.; Jarabo, A.; Gutierrez, D. A Biophysically-based model of the optical properties of skin aging. Comput. Graph. Forum 2015, 34, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, T.; Nishino, K.; Nayar, S.K. The appearance of human skin: A survey. Found. Trends® Comput. Graph. Vis. 2007, 3, 1–95. [Google Scholar] [CrossRef]
- Lan, Y.T.; Kuang, Y.P.; Zhou, L.P.; Wu, G.Y.; Gu, P.C.; Wei, H.J.; Chen, K. Noninvasive monitoring of blood glucose concentration in diabetic patients with optical coherence tomography. Laser Phys. Lett. 2017, 14, 035603. [Google Scholar] [CrossRef]
- Kholodnykh, A.I.; Petrova, I.Y.; Larin, K.V.; Motamedi, M.; Esenaliev, R.O. Precision of measurement of tissue optical properties with optical coherence tomography. Appl. Opt. 2003, 42, 3027. [Google Scholar] [CrossRef] [Green Version]
- Ghosn, M.G.; Sudheendran, N.; Wendt, M.; Glasser, A.; Tuchin, V.V.; Larin, K.V. Monitoring of glucose permeability in monkey skin in vivo using Optical Coherence Tomography. J. Biophotonics 2009, 3, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Backman, V. Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography. Opt. Lett. 2012, 37, 4443. [Google Scholar] [CrossRef] [Green Version]
- Kirillin, M.Y.; Priezzhev, A.V.; Kinnunen, M.; Alarousu, E.; Zhao, Z.; Hast, J.T.; Myllyl, R.A. Glucose sensing in aqueous intralipid suspension with an optical coherence tomography system: Experiment and monte carlo simulation. In Optical Diagnostics and Sensing IV; Cote, G.L., Priezzhev, A.V., Eds.; International Society for Optics and Photonics: San Jose, CA, USA, 2004; p. 164. [Google Scholar]
- Kuranov, R.V.; Sapozhnikova, V.V.; Prough, D.S.; Cicenaite, I.; Esenaliev, R.O. In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography. Phys. Med. Biol. 2006, 51, 3885–3900. [Google Scholar] [CrossRef]
- Sapozhnikova, V.V.; Kuranov, R.V.; Cicenaite, I.; Esenaliev, R.O.; Prough, D.S. Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe. J. Biomed. Opt. 2008, 13, 021112. [Google Scholar] [CrossRef]
- Kinnunen, M.; Myllylä, R.; Vainio, S. Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography. J. Biomed. Opt. 2008, 13, 021111. [Google Scholar] [CrossRef]
- Solanki, J.; Sen, P.; Andrews, J.T.; Thareja, K.K. Blood glucose monitoring in human subjects using optical coherence tomography. J. Opt. 2012, 41, 127–133. [Google Scholar] [CrossRef]
- De Pretto, L.R.; Yoshimura, T.M.; Ribeiro, M.S.; Zanardi de Freitas, A. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches. J. Biomed. Opt. 2016, 21, 086007. [Google Scholar] [CrossRef]
- Ullah, H.; Gilanie, G.; Hussain, F.; Ahmad, E. Autocorrelation optical coherence tomography for glucose quantification in blood. Laser Phys. Lett. 2015, 12, 125602. [Google Scholar] [CrossRef]
- Sapozhnikova, V.V.; Prough, D.; Kuranov, R.V.; Cicenaite, I.; Esenaliev, R.O. Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography. Exp. Biol. Med. 2006, 231, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, M.; Myllylä, R. Measuring changes in the scattering properties of intralipid at different depths with optical coherence tomography. In Saratov Fall Meeting 2006: Coherent Optics of Ordered and Random Media VII; Zimnyakov, D.A., Khlebtsov, N.G., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; p. 65360N. [Google Scholar]
- Thrane, L.; Yura, H.T.; Andersen, P.E. Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle. J. Opt. Soc. Am. A 2000, 17, 484. [Google Scholar] [CrossRef] [PubMed]
- Pogue, B.W.; Patterson, M.S. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J. Biomed. Opt. 2006, 11, 041102. [Google Scholar] [CrossRef] [PubMed]
- Ballerstadt, R.; Kholodnykh, A.; Evans, C.; Boretsky, A.; Motamedi, M.; Gowda, A.; McNichols, R. Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: Toward the development of an implantable sensor. Anal. Chem. 2007, 79, 6965–6974. [Google Scholar] [CrossRef]
- Wang, S.; Sherlock, T.; Salazar, B.; Sudheendran, N.; Manapuram, R.K.; Kourentzi, K.; Ruchhoeft, P.; Willson, R.C.; Larin, K.V. Detection and monitoring of microparticles under skin by optical coherence tomography as an approach to continuous glucose sensing using implanted retroreflectors. IEEE Sens. J. 2013, 13, 4534–4541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.-L.; Lo, Y.-L.; Liao, C.-C.; Phan, Q.-H. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography. J. Biomed. Opt. 2018, 23, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, P.; Manoj, M.; Sujatha, N.; Vasa, N.J.; Rao, S.R. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm. In European Conference on Biomedical Optics; Brown, J.Q., Deckert, V., Eds.; Optical Society of America: Munich, Germany, 2015; p. 953711. [Google Scholar]
- John, P.; Vasa, N.J.; Sujatha, N. Glucose sensing in the anterior chamber of the human eye model using supercontinuum source based dual wavelength low coherence interferometry. Sens. Bio Sens. Res. 2019, 23, 100277. [Google Scholar] [CrossRef]
- Pircher, M.; Baumann, B.; Götzinger, E.; Sattmann, H.; Hitzenberger, C.K. Phase contrast coherence microscopy based on transverse scanning. Opt. Lett. 2009, 34, 1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitgeb, R.A. En face optical coherence tomography: A technology review [Invited]. Biomed. Opt. Express 2019, 10, 2177. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.; Tan, A.C.S.; Cheung, C.M.G.; Keane, P.A.; Dolz-Marco, R.; Sng, C.C.A.; Schmetterer, L. Optical coherence tomography angiography: A review of current and future clinical applications. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 237–245. [Google Scholar] [CrossRef]
- Forst, T.; Caduff, A.; Talary, M.; Weder, M.; Brändle, M.; Kann, P.; Flacke, F.; Friedrich, C.; Pfützner, A. Impact of environmental temperature on skin thickness and microvascular blood flow in subjects with and without diabetes. Diabetes Technol. Ther. 2006, 8, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Meng, Z.; Wang, L.; Yu, H.; Liu, T. Effect of temperature on noninvasive blood glucose monitoring in vivo using optical coherence tomography. Chin. Opt. Lett. 2014, 12, 111701–111705. [Google Scholar] [CrossRef]
- Dean, D.A.; Ramanathan, T.; Machado, D.; Sundararajan, R. Electrical impedance spectroscopy study of biological tissues. J. Electrost. 2008, 66, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamat, D.K.; Bagul, D.; Patil, P.M. Blood glucose measurement using bioimpedance technique. Adv. Electron. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Chinen, K.; Kinjo, I.; Zamami, A.; Irei, K.; Nagayama, K. New equivalent-electrical circuit model and a practical measurement method for human body impedance. Biomed. Mater. Eng. 2015, 26, S779–S786. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Balaguera, E.; López-Dolado, E.; Polo, J.L. Obtaining electrical equivalent circuits of biological tissues using the current interruption method, circuit theory and fractional calculus. RSC Adv. 2016, 6, 22312–22319. [Google Scholar] [CrossRef]
- Miklavčič, D.; Pavšelj, N.; Hart, F.X. Electric properties of tissues. In Wiley Encyclopedia of Biomedical Engineering; Akay, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; ISBN 978-0-471-74036-0. [Google Scholar]
- Saito, T.; Ishikawa, S.; Higashiyama, M.; Nakamura, T.; Rokkaku, K.; Hayashi, H.; Kusaka, I.; Nagasaka, S.; Saito, T. Inverse distribution of serum sodium and potassium in uncontrolled inpatients with diabetes mellitus. Endocr. J. 1999, 46, 75–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trebbels, D.; Hradetzky, D.; Zengerle, R. Capacitive on-line hematocrit sensor design based on impedance spectroscopy for use in hemodialysis machines. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 2–6 September 2009; IEEE: Minneapolis, MN, USA, 2009; pp. 1208–1211. [Google Scholar]
- Liamis, G.; Liberopoulos, E.; Barkas, F.; Elisaf, M. Diabetes mellitus and electrolyte disorders. World J. Clin. Cases 2014, 2, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Livshits, L.; Caduff, A.; Feldman, Y. Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes. J. Phys. Appl. Phys. 2003, 36, 369–374. [Google Scholar] [CrossRef]
- Li, J.; Igbe, T.; Liu, Y.; Nie, Z.; Qin, W.; Wang, L.; Hao, Y. An approach for noninvasive blood glucose monitoring based on bioimpedance difference considering blood volume pulsation. IEEE Access 2018, 6, 51119–51129. [Google Scholar] [CrossRef]
- Tura, A.; Sbrignadello, S.; Barison, S.; Conti, S.; Pacini, G. Impedance spectroscopy of solutions at physiological glucose concentrations. Biophys. Chem. 2007, 129, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Tlili, C.; Reybier, K.; Géloën, A.; Ponsonnet, L.; Martelet, C.; Ouada, H.B.; Lagarde, M.; Jaffrezic-Renault, N. Fibroblast cells: A sensing bioelement for glucose detection by impedance spectroscopy. Anal. Chem. 2003, 75, 3340–3344. [Google Scholar] [CrossRef]
- Hayashi, Y.; Oshige, I.; Katsumoto, Y.; Omori, S.; Yasuda, A.; Asami, K. Dielectric inspection of erythrocyte morphology. Phys. Med. Biol. 2008, 53, 2553–2564. [Google Scholar] [CrossRef]
- Song, K.; Ha, U.; Park, S.; Bae, J.; Yoo, H.-J. An impedance and multi-wavelength near-infrared spectroscopy IC for non-invasive blood glucose estimation. IEEE J. Solid-State Circuits 2015, 50, 1025–1037. [Google Scholar] [CrossRef]
- Harman-Boehm, I.; Gal, A.; Raykhman, A.M.; Naidis, E.; Mayzel, Y. Noninvasive glucose monitoring: Increasing accuracy by combination of multi-technology and multi-sensors. J. Diabetes Sci. Technol. 2010, 4, 583–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sbrignadello, S.; Tura, A.; Ravazzani, P. Electroimpedance spectroscopy for the measurement of the dielectric properties of sodium chloride solutions at different glucose concentrations. J. Spectrosc. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Huber, D.; Talary, M.; Dewarrat, F.; Caduff, A. The compensation of perturbing temperature fluctuation in glucose monitoring technologies based on impedance spectroscopy. Med. Biol. Eng. Comput. 2007, 45, 863–876. [Google Scholar] [CrossRef]
- Geng, Z.; Tang, F.; Ding, Y.; Li, S.; Wang, X. Noninvasive continuous glucose monitoring using a multisensor-based glucometer and time series analysis. Sci. Rep. 2017, 7, 12650. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, P.; Chatterjee, B.; Sen, S. EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing. Sensors 2019, 19, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, T.; Foster, R.; Hao, Y. Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels. IEEE Trans. Antennas Propag. 2014, 62, 3064–3075. [Google Scholar] [CrossRef]
- Topsakal, E.; Karacolak, T.; Moreland, E.C. Glucose-dependent dielectric properties of blood plasma. In Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011; IEEE: Istanbul, Turkey, 2011; pp. 1–4. [Google Scholar]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [Green Version]
- Turgul, V.; Kale, I. Characterization of the complex permittivity of glucose/water solutions for noninvasive RF/Microwave blood glucose sensing. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, 23–26 May 2016; IEEE: Taipei, Taiwan, 2016; pp. 1–5. [Google Scholar]
- Reyes-Vera, E.; Acevedo-Osorio, G.; Arias-Correa, M.; Senior, D.E. A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization. Sensors 2019, 19, 1936. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Cano-Garcia, H.; Sotiriou, I.; Lipscombe, O.; Gouzouasis, I.; Koutsoupidou, M.; Palikaras, G.; Mackenzie, R.; Reeve, T.; Kosmas, P.; et al. A glucose sensing system based on transmission measurements at millimetre waves using micro strip patch antennas. Sci. Rep. 2017, 7, 6855. [Google Scholar] [CrossRef] [Green Version]
- Jean, B.R.; Green, E.C.; McClung, M.J. A microwave frequency sensor for non-invasive blood-glucose measurement. In Proceedings of the 2008 IEEE Sensors Applications Symposium, Atlanta, GA, USA, 12–14 February 2008; IEEE: Atlanta, GA, USA, 2008; pp. 4–7. [Google Scholar]
- Yilmaz, T.; Foster, R.; Hao, Y. Towards accurate dielectric property retrieval of biological tissues for blood glucose monitoring. IEEE Trans. Microw. Theory Tech. 2014, 62, 3193–3204. [Google Scholar] [CrossRef]
- Juan, C.G.; Bronchalo, E.; Potelon, B.; Quendo, C.; Avila-Navarro, E.; Sabater-Navarro, J.M. Concentration measurement of microliter-volume water–glucose solutions using Q factor of microwave sensors. IEEE Trans. Instrum. Meas. 2019, 68, 2621–2634. [Google Scholar] [CrossRef]
- Juan, C.G.; Bronchalo, E.; Potelon, B.; Quendo, C.; Sabater-Navarro, J.M. Glucose concentration measurement in human blood plasma solutions with microwave sensors. Sensors 2019, 19, 3779. [Google Scholar] [CrossRef] [Green Version]
- Juan, C.G.; García, H.; Ávila-Navarro, E.; Bronchalo, E.; Galiano, V.; Moreno, Ó.; Orozco, D.; Sabater-Navarro, J.M. Feasibility study of portable microwave microstrip open-loop resonator for non-invasive blood glucose level sensing: Proof of concept. Med. Biol. Eng. Comput. 2019, 57, 2389–2405. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Luzio, S.; Beutler, J.; Porch, A. Microwave noninvasive blood glucose monitoring sensor: Human clinical trial results. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; IEEE: Honololu, HI, USA, 2017; pp. 876–879. [Google Scholar]
- Choi, H.; Naylon, J.; Luzio, S.; Beutler, J.; Birchall, J.; Martin, C.; Porch, A. Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor. IEEE Trans. Microw. Theory Tech. 2015, 63, 3016–3025. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.N.; Tamanna, S.; Singh, P.; Nadeem, M.D.; Rudramuni, M. Cylindrical dielectric resonator antenna sensor for non-invasive glucose sensing application. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; IEEE: Noida, India, 2019; pp. 961–964. [Google Scholar]
- Yilmaz, T.; Foster, R.; Hao, Y. Radio-frequency and microwave techniques for non-invasive measurement of blood glucose levels. Diagnostics 2019, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, C.G.; Potelon, B.; Quendo, C.; Bronchalo, E.; Sabater-Navarro, J.M. Highly-Sensitive Glucose Concentration Sensor Exploiting Inter-resonators Couplings. In Proceedings of the 2019 49th European Microwave Conference (EuMC), Paris, France, 1–3 October 2019; IEEE: Paris, France, 2019; pp. 662–665. [Google Scholar]
- La Gioia, A.; Porter, E.; Merunka, I.; Shahzad, A.; Salahuddin, S.; Jones, M.; O’Halloran, M. Open-ended coaxial probe technique for dielectric measurement of biological tissues: Challenges and common practices. Diagnostics 2018, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.; Borgese, M.; Degiorgi, M.; Monorchio, A. Electromagnetic characterisation of materials by using Transmission/Reflection (T/R) devices. Electronics 2017, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, M.S.; Raghavan, G.S.V. An overview of dielectric properties measuring techniques. Can. Biosyst. Eng. 2005, 47, 16. [Google Scholar]
- Hofmann, M.; Fischer, G.; Weigel, R.; Kissinger, D. Microwave-based noninvasive concentration measurements for biomedical applications. IEEE Trans. Microw. Theory Tech. 2013, 61, 2195–2204. [Google Scholar] [CrossRef]
- Siegel, P.H.; Lee, Y.; Pikov, V. Millimeter-wave non-invasive monitoring of glucose in anesthetized rats. In Proceedings of the 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, USA, 14–19 September 2014; IEEE: Tucson, AZ, USA, 2014; pp. 1–2. [Google Scholar]
- Xiao, X.; Li, Q. A noninvasive measurement of blood glucose concentration by UWB microwave spectrum. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1040–1043. [Google Scholar] [CrossRef]
- Marsland, T.P.; Evans, S. Dielectric measurements with an open-ended coaxial probe. IEE Proc. H Microw. Antennas Propag. 1987, 134, 341. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Frasch, J.L.; Ellison, S.M.; Chahal, P.; Ouedraogo, R.O. Analysis of the nicolson-ross-weir method for characterizing the electromagnetic properties of engineered materials. Prog. Electromagn. Res. 2016, 157, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Jaspard, F.; Nadi, M. Dielectric properties of blood: An investigation of temperature dependence. Physiol. Meas. 2002, 23, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Lazebnik, M.; Converse, M.C.; Booske, J.H.; Hagness, S.C. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range. Phys. Med. Biol. 2006, 51, 1941–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahzad, A.; Khan, S.; Jones, M.; Dwyer, R.M.; O’Halloran, M. Investigation of the effect of dehydration on tissue dielectric properties in ex vivo measurements. Biomed. Phys. Eng. Express 2017, 3, 045001. [Google Scholar] [CrossRef] [Green Version]
- Eldamak, A.; Fear, E. Conformal and disposable antenna-based sensor for non-invasive sweat monitoring. Sensors 2018, 18, 4088. [Google Scholar] [CrossRef] [Green Version]
- Jaspard, F.; Nadi, M.; Rouane, A. Dielectric properties of blood: An investigation of haematocrit dependence. Physiol. Meas. 2003, 24, 137–147. [Google Scholar] [CrossRef]
- Beving, H.; Eriksson, L.E.G.; Davey, C.L.; Kell, D.B. Dielectric properties of human blood and erythrocytes at radio frequencies (0.2–10 MHz); dependence on cell volume fraction and medium composition. Eur. Biophys. J. 1994, 23, 207–215. [Google Scholar] [CrossRef]
- Caduff, A.; Hirt, E.; Feldman, Y.; Ali, Z.; Heinemann, L. First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system. Biosens. Bioelectron. 2003, 19, 209–217. [Google Scholar] [CrossRef]
- Caduff, A.; Zanon, M.; Zakharov, P.; Mueller, M.; Talary, M.; Krebs, A.; Stahel, W.A.; Donath, M. First experiences with a wearable multisensor in an outpatient glucose monitoring study, part I: The users’ view. J. Diabetes Sci. Technol. 2018, 12, 562–568. [Google Scholar] [CrossRef] [Green Version]
- Zanon, M.; Mueller, M.; Zakharov, P.; Talary, M.S.; Donath, M.; Stahel, W.A.; Caduff, A. First experiences with a wearable multisensor device in a noninvasive continuous glucose monitoring study at home, part II: The Investigators’ view. J. Diabetes Sci. Technol. 2018, 12, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Caduff, A.; Talary, M.S.; Müller, M.; De Feo, O. Wide Band Field Response Measurement for Glucose Determination. U.S. Patent 9,247,905, 2 February 2016. [Google Scholar]
- Wentholt, I.M.E.; Hoekstra, J.B.L.; Zwart, A.; DeVries, J.H. Pendra goes Dutch: Lessons for the CE mark in Europe. Diabetologia 2005, 48, 1055–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caduff, A.; Dewarrat, F.; Talary, M.; Stalder, G.; Heinemann, L.; Feldman, Y. Non-invasive glucose monitoring in patients with diabetes: A novel system based on impedance spectroscopy. Biosens. Bioelectron. 2006, 22, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Talary, M.S.; Falco, L.; De Feo, O.; Stahel, W.A.; Caduff, A. Data processing for noninvasive continuous glucose monitoring with a multisensor device. J. Diabetes Sci. Technol. 2011, 5, 694–702. [Google Scholar] [CrossRef] [Green Version]
- Caduff, A.; Talary, M.S.; Mueller, M.; Dewarrat, F.; Klisic, J.; Donath, M.; Heinemann, L.; Stahel, W.A. Non-invasive glucose monitoring in patients with Type 1 diabetes: A Multisensor system combining sensors for dielectric and optical characterisation of skin. Biosens. Bioelectron. 2009, 24, 2778–2784. [Google Scholar] [CrossRef]
- Gouzouasis, I.; Cano-Garcia, H.; Sotiriou, I.; Saha, S.; Palikaras, G.; Kosmas, P.; Kallos, E. Detection of varying glucose concentrations in water solutions using a prototype biomedical device for millimeter-wave non-invasive glucose sensing. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; IEEE: Davos, Switzerland, 2016; pp. 1–4. [Google Scholar]
- GlucoWiseTM: Meet the New Non-Invasive Glucose Monitor that Helps You Take Control of Your Life. Available online: http://www.gluco-wise.com/ (accessed on 23 December 2019).
- Anderson, J.C.; Lamm, W.J.E.; Hlastala, M.P. Measuring airway exchange of endogenous acetone using a single-exhalation breathing maneuver. J. Appl. Physiol. 2006, 100, 880–889. [Google Scholar] [CrossRef] [Green Version]
- Smolinska, A.; Klaassen, E.M.M.; Dallinga, J.W.; van de Kant, K.D.G.; Jobsis, Q.; Moonen, E.J.C.; van Schayck, O.C.P.; Dompeling, E.; van Schooten, F.J. Profiling of volatile organic compounds in exhaled breath as a strategy to find early predictive signatures of asthma in children. PLoS ONE 2014, 9, e95668. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sun, M.; Zhao, X.; Jiang, C.; Li, Y.; Wang, C. Study of breath acetone in a rat mode of 126 rats with type 1 diabetes. J. Anal. Bioanal. Tech. 2017, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, A.; Quach, A.; Wang, D.; Zhang, H.; Terrera, M.; Jackemeyer, D.; Xian, X.; Tsow, F.; Tao, N.; Forzani, E.S. Breath acetone as biomarker for lipid oxidation and early ketone detection. Glob. J. Obes. Diabetes Metab. Syndr. 2014, 012–019. [Google Scholar]
- Rydosz, A. A negative correlation between blood glucose and acetone measured in healthy and type 1 diabetes mellitus patient breath. J. Diabetes Sci. Technol. 2015, 9, 881–884. [Google Scholar] [CrossRef]
- Turner, C.; Walton, C.; Hoashi, S.; Evans, M. Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps. J. Breath Res. 2009, 3, 046004. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mbi, A.; Shepherd, M. A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C. IEEE Sens. J. 2010, 10, 54–63. [Google Scholar] [CrossRef]
- Galassetti, P.R.; Novak, B.; Nemet, D.; Rose-Gottron, C.; Cooper, D.M.; Meinardi, S.; Newcomb, R.; Zaldivar, F.; Blake, D.R. Breath ethanol and acetone as indicators of serum glucose levels: An initial report. Diabetes Technol. Ther. 2005, 7, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, B.T.E.; Denzer, W.; Hancock, G.; Lunn, A.D.; Peverall, R.; Ritchie, G.A.D.; Williams, K. Measurement of breath acetone in patients referred for an oral glucose tolerance test. J. Breath Res. 2018, 12, 036015. [Google Scholar] [CrossRef]
- Reyes-Reyes, A.; Horsten, R.C.; Urbach, H.P.; Bhattacharya, N. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy. Anal. Chem. 2015, 87, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Storer, M.; Dummer, J.; Lunt, H.; Scotter, J.; McCartin, F.; Cook, J.; Swanney, M.; Kendall, D.; Logan, F.; Epton, M. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 Diabetes. J. Breath Res. 2011, 5, 046011. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Z.; Yuan, Y.; Chen, Z.; Zhao, X.; Li, Y.; Wang, C. Continuous monitoring of breath acetone, blood glucose and blood ketone in 20 type 1 diabetic outpatients over 30 days. J. Anal. Bioanal. Tech. 2017, 08. [Google Scholar] [CrossRef] [Green Version]
- Pappada, S.M.; Cameron, B.D.; Rosman, P.M.; Bourey, R.E.; Papadimos, T.J.; Olorunto, W.; Borst, M.J. Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes. Diabetes Technol. Ther. 2011, 13, 135–141. [Google Scholar] [CrossRef]
- Zarkogianni, K.; Mitsis, K.; Litsa, E.; Arredondo, M.-T.; Ficο, G.; Fioravanti, A.; Nikita, K.S. Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med. Biol. Eng. Comput. 2015, 53, 1333–1343. [Google Scholar] [CrossRef]
- Navale, S.T.; Yang, Z.B.; Liu, C.; Cao, P.J.; Patil, V.B.; Ramgir, N.S.; Mane, R.S.; Stadler, F.J. Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit. Sens. Actuators B Chem. 2018, 255, 1701–1710. [Google Scholar] [CrossRef]
- Tomer, V.K.; Singh, K.; Kaur, H.; Shorie, M.; Sabherwal, P. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens. Actuators B Chem. 2017, 253, 703–713. [Google Scholar] [CrossRef]
- Ma, L.; Ma, S.Y.; Shen, X.F.; Wang, T.T.; Jiang, X.H.; Chen, Q.; Qiang, Z.; Yang, H.M.; Chen, H. PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sens. Actuators B Chem. 2018, 255, 2546–2554. [Google Scholar] [CrossRef]
- Novak, B.J.; Blake, D.R.; Meinardi, S.; Rowland, F.S.; Pontello, A.; Cooper, D.M.; Galassetti, P.R. Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 15613–15618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neupane, S.; Peverall, R.; Richmond, G.; Blaikie, T.P.J.; Taylor, D.; Hancock, G.; Evans, M.L. Exhaled breath isoprene rises during hypoglycemia in type 1 diabetes. Diabetes Care 2016, 39, e97–e98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karyakin, A.A.; Nikulina, S.V.; Vokhmyanina, D.V.; Karyakina, E.E.; Anaev, E.K.H.; Chuchalin, A.G. Non-invasive monitoring of diabetes through analysis of the exhaled breath condensate (aerosol). Electrochem. Commun. 2017, 83, 81–84. [Google Scholar] [CrossRef]
- Liu, G.; Huang, K.; Jia, Q.; Liu, S.; Shen, S.; Li, J.; Dong, E.; Lemaillet, P.; Allen, D.W.; Xu, R.X. Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology. Appl. Opt. 2018, 57, 6772. [Google Scholar] [CrossRef]
- Saager, R.B.; Quach, A.; Rowland, R.A.; Baldado, M.L.; Durkin, A.J. Low-cost tissue simulating phantoms with adjustable wavelength-dependent scattering properties in the visible and infrared ranges. J. Biomed. Opt. 2016, 21, 067001. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hu, X.; Kundu, S.; Nag, A.; Afsarimanesh, N.; Sapra, S.; Mukhopadhyay, S.C.; Han, T. Silicon-based sensors for biomedical applications: A review. Sensors 2019, 19, 2908. [Google Scholar] [CrossRef] [Green Version]
- Contreras, I.; Vehi, J. Artificial intelligence for diabetes management and decision support: Literature review. J. Med. Internet Res. 2018, 20, e10775. [Google Scholar] [CrossRef]
- Hadar, E.; Chen, R.; Toledano, Y.; Tenenbaum-Gavish, K.; Atzmon, Y.; Hod, M. Noninvasive, continuous, real-time glucose measurements compared to reference laboratory venous plasma glucose values. J. Matern. Fetal Neonatal Med. 2019, 32, 3393–3400. [Google Scholar] [CrossRef]
- Optronics Online QST Developed a Non-Invasive Blood Glucose Measurement Technology Using a Mid-Infrared Laser. Available online: http://www.optronics-media.com/news/20170822/47807/ (accessed on 23 December 2019).
- LTT Light Touch Technology. Available online: https://www.light-tt.co.jp/ (accessed on 23 December 2019).
Ref | Type of Patient, No of Subjects | Instrumentation for Measuring Blood Glucose | Insulin Injection/Infusion Treatment | Control of Food Intake | Type of Meas. (Duration) | Correlation of Breath Acetone with Blood Glucose Concentration | Acetone Meas. Technique |
---|---|---|---|---|---|---|---|
[43] | T1D, 3 rats randomly chosen from 20 rats | Standard Diabetic Management BG meter (Roche, Switzerland) | No history of treatment | No information available during continuous monitoring | Continuous monitoring (6 h) | Negative correlation in each subject (glucose decreases and breath acetone increases) | Cavity Ringdown Spectroscopy |
[214] | T1D, 126 Rat Subjects | Blood glucose and ketone monitoring system kit (Optium Xceed, Abbott, USA) | Insulin therapy daily dose of 8 unit/kg (5 days) | 4 h of fasting | Single measurement | Weak negative correlation when T1D subjects were ungrouped (Pearson’s R = −0.13); Moderate negative correlation between the mean group acetone and the mean group blood glucose level when T1D rats were grouped into 3 subgroups (Pearson’s R = −0.678) | Cavity Ringdown Spectroscopy |
[215] | Non-diabetic, 11 Human Subjects | Using Precision Xtra, electrochemical capillary blood monitor from Abbott, and glucose strips, | No information available | on 1st day, isocaloric meals were given to each subject for breakfast lunch and dinner; on 2nd day, subjects fasted until 7:00 pm (measurements were taken from 10: 00 am to 7:00 pm on this day) | Continuous monitoring (9 Hours); Total of about 55 measurements for all 11 subjects | Negative nonlinear correlation for all subjects (glucose decreases and breath acetone increases); Squared regression coefficient R2 = 0.52 | Selected Ion Flow Tube-Mass Spectrometry |
[216] | T1D, 5 Human Patients | Accu-Chek Active (Roche Diagnostics, Berlin, Germany) | No information available | No information available | Continuous monitoring (7 measurements at different times of day) | Negative correlation in each subject (glucose increases and breath acetone decreases); (R2 = 0.92, R2 = 0.96, R2 = 0.74, R2 = 0.45, R2 = 0.11) | Commercial acetone gas sensor (TGS 822, 823 Figaro, Arlington Heights, IL, USA Inc) |
Ref | Type of Patient, No of Subjects | Instrumentation for Measuring Blood Glucose | Insulin Injection/Infusion Treatment | Control of Food Intake | Type of Meas. (Duration) | Correlation of Breath Acetone with Blood Glucose Concentration | Acetone Meas. Technique |
---|---|---|---|---|---|---|---|
[217] | T1D, 8 Human Patients | Intravenous catheter used for blood sampling and hand was warmed to 55C to “arterialize” the venous sample, OGTT performed | Insulin infusion to create hypoglycemia state | Overnight fast | Continuous monitoring (180 min) | Positive correlation in each subject (glucose and acetone decrease) (R2 = 0.85, R2 = 0.88, R2 = 0.90, R2 = 0.78, R2 = 0.60, R2 = 0.86, R2 = 0.94, R2 = 0.71) | Selected Ion Flow Tube-Mass Spectrometry |
[218] | T1D, 30 Human Patients | Standard Self-Management BG meter owned by each patient | Under insulin treatment by wearing an insulin pump | No control | Single measurement per person | Positive correlation between the mean group acetone and the mean group blood glucose level when T1D subjects are grouped by different blood glucose level (R = 0.98, P < 0.02) | Cavity Ringdown Spectroscopy |
[218] | T1D, 3 Human Patients | Standard Self-Management BG meter owned by each patient | Under insulin treatment by wearing an insulin pump | Monitoring of food intake during a 24-h test | Continuous monitoring (24 h) | Weak positive correlation in 2 T1D subjects (glucose and acetone peak at food intake, and then glucose and acetone decrease); A 4-h time delay between the breath acetone peaks and the blood glucose peaks in 1 T1D subject | Cavity Ringdown Spectroscopy |
[44] | T1D, 20 Human Patients | Standard Diabetic Management BG meter (Roche, Switzerland) | No information available | Measurements were done in 4 different testing conditions: 14 h fast and 2-h post meals (breakfast, lunch and dinner) | Single measurement per person (4 samples taken for each subject under different testing condition) | Weak positive correlation between the mean individual breath acetone and the mean individual blood glucose levels in T1D subjects (R = 0.56, P < 0.005) | Developed breath acetone analyzer based on the Cavity Ringdown Spectroscopy |
[43] | T1D, 5 rats | Standard Diabetic Management BG meter (Roche, Switzerland) | Insulin injected for five days, Measurements were done in third and fifth day | No information available during continuous monitoring | Single measurement in the third and fifth day | Weak positive correlation in T1D subjects (Pearson’s R = 0.59, P < 0.05) | Cavity Ringdown Spectroscopy |
[45] | T2D, 113 Human Patients | No information available | No information available | 8 h of fasting | Single measurement per person | Weak positive correlation (R = 0.32, P = 0.002) | Gas Chromatography/Mass Spectrometry coupled with Solid Phase Micro-Extraction technique |
[219] | Non-diabetic, 10 Human Subjects | Intravenous catheter was inserted into basilic vein, OGTT performed | No insulin injection; Serum insulin levels were measured in all subjects and then average values were calculated; A rapid increase in insulin level by 30 min, and peaking at 60 min | Overnight fast | Continuous monitoring (120 min) | Weak positive correlation in each subject; An average individual correlation coefficient of R = 0.4; The average value of acetone had a continuous decreasing trend during experiments, while a rapid increase observed in the average value of glucose which then gradually returned to its baseline value | Gas Chromatography/Mass Spectrometry |
Ref | Type of Patient, No of Subjects | Instrumentation for Measuring Blood Glucose | Insulin Injection/Infusion Treatment | Control of Food Intake | Type of Meas. (Duration) | Correlation of Breath Acetone with Blood Glucose Concentration | Acetone Meas. Technique |
---|---|---|---|---|---|---|---|
[44] | T1D, 20 Human Patients; T2D, 312 Human Patients; Non-Diabetic, 52 Human Subjects | Standard Diabetic Management BG meter (Roche, Switzerland) | No information available | Measurements were done in 4 different testing condition: 14 h fast and 2-h post meals (breakfast, lunch and dinner) | Single measurement per person (4 samples taken for each subject under different testing condition) | No clear correlation between the individual breath acetone and the individual blood glucose level in T1D, T2D and healthy subjects | Developed breath acetone analyzer based on the Cavity Ringdown Spectroscopy |
[220] | T2D, 22; IGT *, 33; IFG **, 14; RHG ***, 5; Non-Diabetic, 67 Human Subjects | No information available | No information available | 10-h fasting (no eating during the experiment) | Single measurement every hour for 2.5 h (0 h (initial measurement), 1 h, 2 h) in all group | No clear correlation at any time (0 h,1 h,2 h) between individual breath acetone and individual blood glucose level in all groups | Ion-molecule-Reaction Mass Spectrometer (V&F Analysen and Messtechnik GmbH, Austria) |
[46] | T2D, 149 Human Patients; Non-diabetic, 42 Human Subjects | Standard Diabetic Management BG meter (Roche, Switzerland) | No information available | Measurements were done in 4 different testing condition: 14 h fast and 2-h post meals (breakfast, lunch and dinner) | Single measurement per person (4 samples taken for each subject under different testing condition) | No clear correlation at any condition between individual breath acetone and individual blood glucose level in T2D and healthy subjects | Cavity Ringdown Spectroscopy |
[221] | T1D, 3 Human Patients (2 minors and 1 adult) | Glucose meter (Bayer Contour Link) | Insulin Dispensers (2 of subjects who were minors) and manual insulin injection (1 Adult) | Overnight fast | Single measurement per person | No clear correlation in T1D subjects | Quantum Cascade Laser Spectroscopy |
[222] | T2D, 38 Human Patients | Abbot Optium Xceed | Various Treatment: Diabetic diet(6), Metformin monotherapy(21), Insulin plus metformin(5) Combinations of oral therapy(5) | No fasting and no eating one hour before the test | Single measurement per person | No correlation in T2D subjects | Selected Ion Flow Tube-Mass Spectrometry |
[223] | T1D, 20 Human Patients | Standard Diabetes Monitoring Meter (Abbott Diabetes Care Ltd., UK, FreeStyle Optium) | No information available | Minimum 8 h overnight fast | Single measurement once per day for 30 days | No clear correlation between the mean individual blood glucose and the mean individual breath acetone in T1D subjects (R = 0.17, P = 0.43) | Developed breath acetone analyzer based on the Cavity Ringdown Spectroscopy |
Non-invasive Device | Technology | Company | Meas. Area | Description | Ref |
---|---|---|---|---|---|
TensorTip Combo Glucometer | VIS-NIR spectroscopy | Cnoga Medical Ltd. (Israel) | Fingertip | State: approved for use in numerous countries worldwide; Comprised of four LEDs (600 nm–1000 nm) and a camera sensor; Subjects enrolled: 14 healthy, 6 T1D and 16 T2D; Accuracy based on consensus error grid analysis: 96.6% in zone A and 3.4% in zone B. | [64,65,66] |
Wizmi | NIR spectroscopy | Wear2b Ltd. (Israel) | Wrist | State: Proof of concept acquisition; Subjects enrolled: 32 healthy women; Accuracy based on Clarke error grid analysis: 93% in zone A, 7% in zone B. | [236] |
LTT device developed by the research group of Quantum Science and Technology | MIR spectroscopy | Light Touch Technology Ltd. (Japan) | Finger | State: Under development; High brightness light source in MIR range (6000–9000 nm) was developed using optical parametric oscillator technology of solid-state laser; Accuracy results: not available. | [237,238] |
Biovotion | Bioimpedance Spectroscopy | Biovotion Ltd. (Switzerland) | Arm | State: proof of concept acquisition; Is a multi-sensor system; Measuring dielectric properties of tissue at three different frequency region: (1–200 kHz), (0.1–100 MHz) and (1–2 GHz); Subjects enrolled: 20 T1Ds; Accuracy based on Clarke error grid analysis: 86.9% in A + B, 0.6% in C, 12.1% in D, 0.4% in E. | [203,204,205] |
GlucoWise | Millimeter wave spectroscopy, nanocomposite technology | MediWise Ltd. (UK) | Between the thumb and forefinger | State: under development; Millimeter wave transmission measurement at a range between 56 GHz and 61 GHz using microstrip patch antennas; Accuracy results: not available. | [210,211] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokrekhodaei, M.; Quinones, S. Review of Non-Invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. Sensors 2020, 20, 1251. https://doi.org/10.3390/s20051251
Shokrekhodaei M, Quinones S. Review of Non-Invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. Sensors. 2020; 20(5):1251. https://doi.org/10.3390/s20051251
Chicago/Turabian StyleShokrekhodaei, Maryamsadat, and Stella Quinones. 2020. "Review of Non-Invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone" Sensors 20, no. 5: 1251. https://doi.org/10.3390/s20051251
APA StyleShokrekhodaei, M., & Quinones, S. (2020). Review of Non-Invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. Sensors, 20(5), 1251. https://doi.org/10.3390/s20051251