A Flexible Wireless Dielectric Sensor for Noninvasive Fluid Monitoring
<p>(<b>a</b>) Illustrative model schematic of resistor–inductor–capacitor (RLC) wireless measurement; (<b>b</b>) structural schematic of the proposed dielectric sensor; (<b>c</b>) electric field leaked out between the interdigital electrodes on high-frequency structure simulator (HFSS) simulation; and (<b>d</b>) schematic and equivalent circuit of the fluid monitoring.</p> "> Figure 2
<p>Fabrication process of the proposed RLC dielectric sensor.</p> "> Figure 3
<p>HFSS simulation of the dielectric sensor monitoring the fluid. (<b>a</b>) Model of the HFSS simulation and (<b>b</b>) the sensor’s resonant frequency with 12–24 digits. The S<sub>11</sub> (<b>c</b>) and fitting results (<b>d</b>) of the fluid with different relative permittivities. The S<sub>11</sub> (<b>e</b>) and fitting results (<b>f</b>) of the fluid with different conductivities.</p> "> Figure 4
<p>Experimental setup of the dielectric sensor monitoring the fluid. (<b>a</b>) Picture of the testing platform for the dielectric sensor. (<b>b</b>) Picture of the sensor stuck on the tube and communicated with the readout coil.</p> "> Figure 5
<p>The S<sub>11</sub> (<b>a</b>) and fitting results (<b>b</b>) of the ethanol/water solutions with different ethanol’s volume fraction. (<b>c</b>) Sensor’s stability with pure water injected.</p> "> Figure 6
<p>The S<sub>11</sub> (<b>a</b>) and fitting results (<b>b</b>) of the NaCl solutions with different concentrations. (<b>c</b>) The sensor’s stability with 0.5 M NaCl solution injected.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Operating Principle
2.2. Sensor Fabrication
3. Results
3.1. Simulation of the Dielectric Sensor
3.2. Monitoring the Dielectric Property of the Ethanol/Water Solutions
3.3. Monitoring the Dielectric Property of NaCl Solutions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dan, Y.Y.; Yang, Y.Y.; Hong, Y.; Liang, T.; Yao, Z.; Chen, X.; Xiong, J. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor. Sensors 2018, 18, 532. [Google Scholar]
- Su, S.; Lv, W.; Zhang, T.; Tan, Q.; Zhang, W.; Xiong, J. A MoS2 Nanoflakes-Based LC Wireless Passive Humidity Sensor. Sensors 2018, 18, 4466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, J.C.; Vigliotti, A.J.; Verdi, F.W.; Walsh, S.M. Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor. Sens. Actuators A (Phys.) 2002, 102, 61–66. [Google Scholar] [CrossRef]
- Kim, N.-Y.; Adhikari, K.; Dhakal, R.; Chuluunbaatar, Z.; Wang, C.; Kim, E.-S. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip. Sci. Rep. 2015, 5, 7807. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Liu, Y.; Cheng, H.; Shin, W.-J.; Fan, J.A.; Liu, Z.; Lu, C.J.; Kong, G.-W.; Chen, K.; Patnaik, D.; et al. Materials and Designs for Wireless Epidermal Sensors of Hydration and Strain. Adv. Funct. Mater. 2014, 24, 3846–3854. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.; Lee, M.-S.; Kim, K.; Ji, S.; Kim, Y.-T.; Park, J.; Na, K.; Bae, K.-H.; Kim, H.K.; et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 2017, 8, 14997. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.Y.; Tee, B.C.; Chortos, A.L.; Schwartz, G.; Tse, V.; Lipomi, D.J.; Wong, H.S.; McConnell, M.V.; Bao, Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 5028. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-Y.; Kim, J.; Cheong, W.H.; Lee, I.J.; Lee, J.; Im, H.-G.; Kong, H.; Bae, B.-S.; Park, J.-U. Alcohol gas sensors capable of wireless detection using In2O3/Pt nanoparticles and Ag nanowires. Sens. Actuators B Chem. 2018, 259, 825–832. [Google Scholar] [CrossRef]
- Mannoor, M.S.; Tao, H.; Clayton, J.D.; Sengupta, A.; Kaplan, D.L.; Naik, R.R.; Verma, N.; Omenetto, F.G.; McAlpine, M.C. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 2012, 3, 763. [Google Scholar] [CrossRef]
- Kubáň, P.; Hauser, P.C. Contactless conductivity detection for analytical techniques—Developments from 2012 to 2014. ELECTROPHORESIS 2015, 36, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Kubáň, P.; Hauser, P.C. Contactless conductivity detection for analytical techniques—Developments from 2014 to 2016. ELECTROPHORESIS 2017, 38, 95–114. [Google Scholar] [CrossRef]
- Kubáň, P.; Hauser, P.C. Contactless conductivity detection for analytical techniques: Developments from 2010 to 2012. ELECTROPHORESIS 2013, 34, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Fracassi, S.; José, A.; do Lago, C.L. An Oscillometric Detector for Capillary Electrophoresis. Anal. Chem. 1998, 70, 4339–4343. [Google Scholar] [CrossRef]
- Zemann, A.J.; Schnell, E.; Volgger, D.; Bonn, G.K. Contactless Conductivity Detection for Capillary Electrophoresis. Anal. Chem. 1998, 70, 563–567. [Google Scholar] [CrossRef]
- Kubáň, P.; Hauser, P.C. A review of the recent achievements in capacitively coupled contactless conductivity detection. Anal. Chim. Acta 2008, 607, 15–29. [Google Scholar] [CrossRef]
- Pumera, M. Contactless Conductivity Detection for Microfluidics: Designs and Applications. Talanta 2008, 74, 358–364. [Google Scholar] [CrossRef]
- Coltro, W.K.T.; Rodrigo, S.N.; de Jesus, M.A.; Da Silva, J.A.F.; Carrilho, E. Microfluidic devices with integrated dual-capacitively coupled contactless conductivity detection to monitor binding events in real time. Sens. Actuators B Chem. 2014, 192, 239–246. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Chen, K.; Shin, W.-J.; Lu, C.-J.; Kong, G.-W.; Patnaik, D.; Lee, S.-H.; Cortes, J.F.; Rogers, J.A. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 2014, 10, 3083–3090. [Google Scholar] [CrossRef]
- Liang, Y.; Ma, M.; Zhang, F.; Liu, F.; Liu, Z.; Wang, D.; Li, Y.; An, L.C. Wireless Microfluidic Sensor Based on Low Temperature Co-Fired Ceramic (LTCC) Technology. Sensors 2019, 19, 1189. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.Y.; Li, W.; Zheng, S.Y.; Tai, Y.C. A Resonance-Induced Sensitivity Enhancement Method for Conductivity Sensors. In Proceedings of the 5th IEEE Conference on Sensors, Daegu, Korea, 22–25 October 2006. [Google Scholar]
- Yan, Z.; Pan, T.; Xue, M.; Chen, C.; Cui, Y.; Yao, G.; Huang, L.; Liao, F.; Jing, W.; Zhang, H.; et al. Thermal Release Transfer Printing for Stretchable Conformal Bioelectronics. Adv. Sci. (Weinh.) 2017, 4, 1700251. [Google Scholar] [CrossRef]
- Mashimo, S.; Umehara, T.; Redlin, H. Structures of water and primary alcohol studied by microwave dielectric analyses. J. Chem. Phys. 1991, 95, 6257–6260. [Google Scholar] [CrossRef]
- Artemkina, M.Y.; Shcherbakov, V.V.; Korotkova, E.N. High-frequency conductivity of mixtures of water with methanol, ethanol, and propanol. Russ. J. Electrochem. 2015, 51, 180–184. [Google Scholar] [CrossRef]
- Peyman, A.; Gabriel, C.; Grant, E.H. Complex permittivity of sodium chloride solutions at microwave frequencies. Bioelectromagnetics 2007, 28, 264–274. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.-T.; Chen, Y.; Xiong, Y.-F.; Xu, F.; Lu, Y.-Q. A Flexible Wireless Dielectric Sensor for Noninvasive Fluid Monitoring. Sensors 2020, 20, 174. https://doi.org/10.3390/s20010174
Zhu H-T, Chen Y, Xiong Y-F, Xu F, Lu Y-Q. A Flexible Wireless Dielectric Sensor for Noninvasive Fluid Monitoring. Sensors. 2020; 20(1):174. https://doi.org/10.3390/s20010174
Chicago/Turabian StyleZhu, Heng-Tian, Ye Chen, Yi-Feng Xiong, Fei Xu, and Yan-Qing Lu. 2020. "A Flexible Wireless Dielectric Sensor for Noninvasive Fluid Monitoring" Sensors 20, no. 1: 174. https://doi.org/10.3390/s20010174
APA StyleZhu, H. -T., Chen, Y., Xiong, Y. -F., Xu, F., & Lu, Y. -Q. (2020). A Flexible Wireless Dielectric Sensor for Noninvasive Fluid Monitoring. Sensors, 20(1), 174. https://doi.org/10.3390/s20010174