LocSpeck: A Collaborative and Distributed Positioning System for Asymmetric Nodes Based on UWB Ad-Hoc Network and Wi-Fi Fingerprinting
<p>IEEE 802.15.4-2011 supported network topologies [<a href="#B32-sensors-20-00078" class="html-bibr">32</a>]: (<b>a</b>) Star network topology; (<b>b</b>) Peer-to-peer network topology.</p> "> Figure 2
<p>Ultra-wideband (UWB)-based network architecture for ranging and positioning applications: (<b>a</b>) Fixed role network; (<b>b</b>) Dynamic role network.</p> "> Figure 3
<p>LocSpeck platform overview [<a href="#B41-sensors-20-00078" class="html-bibr">41</a>,<a href="#B42-sensors-20-00078" class="html-bibr">42</a>].</p> "> Figure 4
<p>The LocSpeck ranging devices: (<b>a</b>) Ranging devices for the proposed UWB-based positioning system; (<b>b</b>) Pozyx positioning system–anchor node; (<b>c</b>) Pozyx positioning system–tag node [<a href="#B29-sensors-20-00078" class="html-bibr">29</a>].</p> "> Figure 5
<p>The LocSpeck logging Android application: (<b>a</b>) Data logging screen; (<b>b</b>) LocSpeck node settings screen; (<b>c</b>) Decawave DW1000 settings screen.</p> "> Figure 6
<p>Two-way ranging frame sequence [<a href="#B28-sensors-20-00078" class="html-bibr">28</a>]: (<b>a</b>) Single-sided two-way ranging; (<b>b</b>) Asymmetric double-sided two-way ranging.</p> "> Figure 7
<p>Ranging message structure: (<b>a</b>) Decawave DWM1000 modules, based on DW1000 UWB radio chip; (<b>b</b>) Ranging messages exchanged between two nodes.</p> "> Figure 8
<p>LocSpeck medium access protocol.</p> "> Figure 9
<p>Range measurement frame statistics: (<b>a</b>) Range error probability density function (pdf), (<b>b</b>) Ranging frame duration pdf.</p> "> Figure 10
<p>Messages exchange timeline of the ranging frame.</p> "> Figure 11
<p>Dynamic node role transition: (<b>a</b>) Tag node role, (<b>b</b>) Anchor node role.</p> "> Figure 12
<p>Simulated ranging rates results: the average ranging rate over the channel for all nodes and the average ranging rate per node.</p> "> Figure 13
<p>Testing environment floorplan.</p> "> Figure 14
<p>Pozyx reference trajectory.</p> "> Figure 15
<p>Nodes activity summary.</p> "> Figure 16
<p>The combined positioning error CDF for the four scenarios.</p> ">
Abstract
:1. Introduction
1.1. UWB-Based Ranging
1.2. UWB-Based Positioning
1.3. UWB Network Architecture
1.4. Paper Outline
2. Ad-Hoc UWB-Based Positioning System
2.1. Ad-Hoc Network Structure
- Flat network topology: the network is composed of symmetric nodes in terms of its communication capability, which means that each node can initiate a ranging request or respond to such requests from other nodes. In addition, there are no coordinating nodes as opposed to the peer-to-peer network architecture described in the IEEE 802.15.4-2011 standard [32,40]. However, the sensing and computational capabilities of the nodes can still be asymmetric.
- Single-hop network: the nodes are only interested in exchanging ranging messages with their neighboring nodes.
- Energy conservation: after either a failed or a successful ranging exchange attempt, the radio chip goes to sleep for a predefined period of time before it can engage in a new ranging sequence.
- Flexibility: nodes can enter and exit the network in real-time, with no need to reconfigure or notify the existing nodes.
2.2. Dynamic Nodes Architecture
2.3. Range Measurement Messages
- Device A begins the ranging exchange by sending a blink message to any of the surrounding nodes. The purpose of this message is to notify any available nodes that device A is prepared to proceed with the range measurement exchange.
- If device B is within the communication range and is listening to the correct UWB channel, it receives the blink frame and replies by sending the range measurement initiation message, using the address of device A.
- Device A receives the ranging initiation message, then it sends back a poll message to the other side and records the precise time of sending the poll frame.
- Device B gets the poll message and stamps the arrival time. Then, device B sends a response message to device A and record the reply time ().
- Device A gets the response frame and saves the arrival time stamp, and then calculates the first round-trip time (). After the second reply time (), device A sends the final message.
- Device B receives the final frame and records the round-trip time (). Using Equation (4), device B calculates the propagation time (), and consequently, the range.
- Finally, device B sends the propagation time back to device A.
2.4. Medium Access Protocol
3. Collaborative Positioning Algorithm
3.1. Distributed Relative-Range Measurement Update
Algorithm 1 Distributed Relative-Range Measurement Update | |
Input: | Range measurement and collaborating node state parametrized with the mean and the covariance: |
Output: | Local state posterior, , and cross-covariance, |
1 for each particle | |
2 Evaluate the conditional distribution, , Equations (13) and (14) | |
3 Evaluate the measurement likelihood, , Equation (7) | |
4 Evaluate the marginal likelihood: | |
5 Evaluate , using RBPF formulation [49,50] | |
6 Evaluate particle weight: | |
7 Time update step: and | |
8 end for | |
9 Normalize the particle weights: | |
10 Evaluate the mean and variance terms, and , Equations (10) and (11). | |
11 Update state cross-covariance term: , Equation (12) | |
12 return and |
3.2. Wi-Fi RSSI Fingerprint Update
3.3. Floorplan Update
4. Experiments and Results
4.1. Medium Access Protocol Performance
4.1.1. Range Measurement Messages Timing
4.1.2. Medium Access Protocol Performance
4.2. Positioning and Localization Performance
4.2.1. Reference Trajectories and Fingerprints Maps
4.2.2. Standalone Positioning Results
4.2.3. Collaborative Positioning Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2019, 21, 2568–2599. [Google Scholar] [CrossRef] [Green Version]
- Buehrer, R.M.; Wymeersch, H.; Vaghefi, R.M. Collaborative Sensor Network Localization: Algorithms and Practical Issues. Proc. IEEE 2018, 106, 1089–1114. [Google Scholar] [CrossRef] [Green Version]
- Schloemann, J.; Buehrer, R.M. On the Value of Collaboration in Location Estimation. IEEE Trans. Veh. Technol. 2016, 65, 3585–3596. [Google Scholar] [CrossRef]
- Shen, Y.; Wymeersch, H.; Win, M.Z. Fundamental Limits of Wideband Localization—Part II: Cooperative Networks. IEEE Trans. Inf. Theory 2010, 56, 4981–5000. [Google Scholar] [CrossRef] [Green Version]
- Soganci, H.; Gezici, S.; Poor, H.V. Accurate positioning in ultra-wideband systems. IEEE Wirel. Commun. 2011, 18, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Orlik, P.V.; Sahinoglu, Z.; Molisch, A.F.; Kinney, P. UWB Systems for Wireless Sensor Networks. Proc. IEEE 2009, 97, 313–331. [Google Scholar] [CrossRef]
- Gezici, S.; Tian, Z.; Giannakis, G.B.; Kobayashi, H.; Molisch, A.F.; Poor, H.V.; Sahinoglu, Z. Localization via ultra-wideband radios: A look at positioning aspects for future sensor networks. IEEE Signal Process. Mag. 2005, 22, 70–84. [Google Scholar] [CrossRef]
- Mazhar, F.; Khan, M.G.; Sällberg, B. Precise Indoor Positioning Using UWB: A Review of Methods, Algorithms and Implementations. Wirel. Pers. Commun. 2017, 97, 4467–4491. [Google Scholar] [CrossRef]
- Ferreira, A.F.G.; Fernandes, D.M.A.; Catarino, A.P.; Monteiro, J.L. Localization and Positioning Systems for Emergency Responders: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2836–2870. [Google Scholar] [CrossRef]
- Gezici, S.; Poor, H.V. Position Estimation via Ultra-Wide-Band Signals. Proc. IEEE 2009, 97, 386–403. [Google Scholar] [CrossRef] [Green Version]
- Sahinoglu, Z.; Gezici, S. Ranging in the IEEE 802.15.4a Standard. In Proceedings of the 2006 IEEE Annual Wireless and Microwave Technology Conference, Clearwater Beach, FL, USA, 4–5 December 2006; pp. 1–5. [Google Scholar]
- Bensky, A. Wireless Positioning Technologies and Applications; Artech House: Boston, MA, USA, 2008. [Google Scholar]
- Gigl, T.; Janssen, G.J.M.; Dizdarevic, V.; Witrisal, K.; Irahhauten, Z. Analysis of a UWB Indoor Positioning System Based on Received Signal Strength. In Proceedings of the Navigation and Communication 2007 4th Workshop on Positioning, Hannover, Germany, 22 March 2007; pp. 97–101. [Google Scholar]
- Qi, Y.; Kobayashi, H. On relation among time delay and signal strength based geolocation methods. In Proceedings of the GLOBECOM ’03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489), San Francisco, CA, USA, 1–5 December 2003; Volume 7, pp. 4079–4083. [Google Scholar]
- Waadt, A.E.; Wang, S.; Kocks, C.; Burnic, A.; Xu, D.; Bruck, G.H.; Jung, P. Positioning in multiband OFDM UWB utilizing received signal strength. In Proceedings of the Navigation and Communication 2010 7th Workshop on Positioning, Dresden, Germany, 11–12 March 2010; pp. 308–312. [Google Scholar]
- Wang, S.; Waadt, A.; Burnic, A.; Xu, D.; Kocks, C.; Bruck, G.H.; Jung, P. System implementation study on RSSI based positioning in UWB networks. In Proceedings of the 2010 7th International Symposium on Wireless Communication Systems, York, UK, 19–22 September 2010; pp. 36–40. [Google Scholar]
- Ruiz, A.R.J.; Granja, F.S. Comparing Ubisense, BeSpoon, and DecaWave UWB Location Systems: Indoor Performance Analysis. IEEE Trans. Instrum. Meas. 2017, 66, 2106–2117. [Google Scholar] [CrossRef]
- Retscher, G.; Gikas, V.; Hofer, H.; Perakis, H.; Kealy, A. Range validation of UWB and Wi-Fi for integrated indoor positioning. Appl. Geomat. 2019, 11, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Wen, K.; Li, Y.; Zhang, S.; Zhang, K. A Novel NLOS Mitigation Algorithm for UWB Localization in Harsh Indoor Environments. IEEE Trans. Veh. Technol. 2019, 68, 686–699. [Google Scholar] [CrossRef]
- Marano, S.; Gifford, W.; Wymeersch, H.; Win, M. NLOS identification and mitigation for localization based on UWB experimental data. IEEE J. Sel. Areas Commun. 2010, 28, 1026–1035. [Google Scholar] [CrossRef] [Green Version]
- Pointon, H.; McLoughlin, B.; Matthews, C.; Bezombes, F. Towards a Model Based Sensor Measurement Variance Input for Extended Kalman Filter State Estimation. Drones 2019, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Yang, X. NLOS Mitigation for UWB Localization Based on Sparse Pseudo-Input Gaussian Process. IEEE Sens. J. 2018, 18, 4311–4316. [Google Scholar] [CrossRef]
- Barral, V.; Escudero, C.J.; García-Naya, J.A.; Maneiro-Catoira, R. NLOS Identification and Mitigation Using Low-Cost UWB Devices. Sensors 2019, 19, 3464. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, J.B.; Massanet Ginard, M.; Jensen, O.K.; Shen, M. Non-Line-of-Sight Identification for UWB Indoor Positioning Systems using Support Vector Machines. In Proceedings of the 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar]
- Liu, F.; Wang, J.; Zhang, J.; Han, H. An Indoor Localization Method for Pedestrians Base on Combined UWB/PDR/Floor Map. Sensors 2019, 19, 2578. [Google Scholar] [CrossRef] [Green Version]
- Retscher, G.; Hofer, H.; Kealy, A.; Gikas, V.; Obex, F. Cooperative Localization in Indoor Environments Using Constrained Differential Wi-Fi and UWB Measurements. In Proceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, USA, 25–29 September 2017; pp. 2869–2882. [Google Scholar]
- Liu, R.; Yuen, C.; Do, T.-N.; Zhang, M.; Guan, Y.L.; Tan, U.-X. Cooperative positioning for emergency responders using self IMU and peer-to-peer radios measurements. Inf. Fusion 2020, 56, 93–102. [Google Scholar] [CrossRef]
- Decawave. DW1000 User Manual; Decawave Ltd.: Dublin, Ireland, 2016. [Google Scholar]
- Pozyx NV Pozyx-Accurate Positioning. Available online: https://www.pozyx.io (accessed on 14 October 2018).
- Masiero, A.; Fissore, F.; Guarnieri, A.; Pirotti, F.; Visintini, D.; Vettore, A. Performance Evaluation of Two Indoor Mapping Systems: Low-Cost UWB-Aided Photogrammetry and Backpack Laser Scanning. Appl. Sci. 2018, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Creator-Python-Multitag Positioning. Available online: https://www.pozyx.io/documentation/creator/python/multitag-positioning (accessed on 26 February 2019).
- IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). In IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006); IEEE: Piscataway, NJ, USA, 2011; pp. 1–314.
- Bachir, A.; Dohler, M.; Watteyne, T.; Leung, K.K. MAC Essentials for Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2010, 12, 222–248. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Xiao, L.; Soltani, S.; Mutka, M.W.; Xi, N. The Evolution of MAC Protocols in Wireless Sensor Networks: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 101–120. [Google Scholar] [CrossRef]
- Doudou, M.; Djenouri, D.; Badache, N. Survey on Latency Issues of Asynchronous MAC Protocols in Delay-Sensitive Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2013, 15, 528–550. [Google Scholar] [CrossRef]
- Raza, M.; Aslam, N.; Le-Minh, H.; Hussain, S.; Cao, Y.; Khan, N.M. A Critical Analysis of Research Potential, Challenges, and Future Directives in Industrial Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2018, 20, 39–95. [Google Scholar] [CrossRef]
- Quintero, V.; Estevez, C.; Orchard, M.; Pérez, A. Improvements of Energy-Efficient Techniques in WSNs: A MAC-Protocol Approach. IEEE Commun. Surv. Tutor. 2018, 21, 1188–1208. [Google Scholar] [CrossRef]
- Roy, R.R. Handbook of Mobile ad Hoc Networks for Mobility Models; Springer: New York, NY, USA, 2011. [Google Scholar]
- Franceschetti, G.; Stornelli, S.; Stornelli, S. Wireless Networks: From the Physical Layer to Communication, Computing, Sensing and Control; Elsevier Science & Technology: San Diego, CA, USA, 2006. [Google Scholar]
- Karapistoli, E.; Pavlidou, F.-N.; Gragopoulos, I.; Tsetsinas, I. An overview of the IEEE 802.15.4a Standard. IEEE Commun. Mag. 2010, 48, 47–53. [Google Scholar] [CrossRef]
- Decawave. DWM1000 Datasheet; Decawave Ltd: Dublin, Ireland, 2016. [Google Scholar]
- TI LAUNCHXL-CC2640R2 SimpleLinkTM Bluetooth® low energy CC2640R2F wireless MCU LaunchPadTM development kit | TI.com. Available online: http://www.ti.com/tool/LAUNCHXL-CC2640R2 (accessed on 27 February 2019).
- McElroy, C.; Neirynck, D.; McLaughlin, M. Comparison of wireless clock synchronization algorithms for indoor location systems. In Proceedings of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014; pp. 157–162. [Google Scholar]
- Roberts, L.G. ALOHA Packet System with and Without Slots and Capture. SIGCOMM Comput. Commun. Rev. 1975, 5, 28–42. [Google Scholar] [CrossRef]
- Rajandekar, A.; Sikdar, B. A Survey of MAC Layer Issues and Protocols for Machine-to-Machine Communications. IEEE Internet Things J. 2015, 2, 175–186. [Google Scholar] [CrossRef]
- Ridolfi, M.; Van de Velde, S.; Steendam, H.; De Poorter, E. Analysis of the Scalability of UWB Indoor Localization Solutions for High User Densities. Sensors 2018, 18, 1875. [Google Scholar] [CrossRef] [Green Version]
- Sakr, M.; El-Sheimy, N. Filter Architectures for Indoor Localization Using Gaussian Process on Smartphones. In Proceedings of the 10th International Conference on Mobile Mapping Technology (MMT 2017), Cairo, Egypt, 6–8 May 2017. [Google Scholar]
- Sakr, M.; El-Sheimy, N. Efficient Wi-Fi Signal Strength Maps Using Sparse Gaussian Process Models. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–8. [Google Scholar]
- Schön, T.; Gustafsson, F.; Nordlund, P.J. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Trans. Signal Process. 2005, 53, 2279–2289. [Google Scholar] [CrossRef] [Green Version]
- Schön, T.B.; Karlsson, R.; Gustafsson, F. The marginalized particle filter-analysis, applications and generalizations. ESAIM Proc. 2007, 19, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Soloviev, A. Distributed Estimation for Vehicular Collaborative Navigation. In Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL, USA, 8–12 September 2014; pp. 211–222. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Lankhorst, T. DecaWave DW1000 TX Frame Time Estimation. Available online: https://tomlankhorst.nl/estimating-decawave-dw1000-tx-time/ (accessed on 6 March 2019).
- Decawave. Sources of Error in DW1000 Based Two-Way Ranging (TWR) Schemes; Decawave Ltd.: Dublin, Ireland, 2014. [Google Scholar]
- Ashraf, I.; Hur, S.; Park, Y. Indoor Positioning on Disparate Commercial Smartphones Using Wi-Fi Access Points Coverage Area. Sensors 2019, 19, 4351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, I.; Hur, S.; Park, Y. mPILOT-Magnetic Field Strength Based Pedestrian Indoor Localization. Sensors 2018, 18, 2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-homayani, F.; Mahoor, M. Improved indoor geomagnetic field fingerprinting for smartwatch localization using deep learning. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–8. [Google Scholar]
- Liu, M.; Chen, R.; Li, D.; Chen, Y.; Guo, G.; Cao, Z.; Pan, Y. Scene Recognition for Indoor Localization Using a Multi-Sensor Fusion Approach. Sensors 2017, 17, 2847. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, I.; Hur, S.; Park, Y. Application of Deep Convolutional Neural Networks and Smartphone Sensors for Indoor Localization. Appl. Sci. 2019, 9, 2337. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sospedra, J.; Jiménez, A.; Moreira, A.; Lungenstrass, T.; Lu, W.-C.; Knauth, S.; Mendoza-Silva, G.; Seco, F.; Pérez-Navarro, A.; Nicolau, M.; et al. Off-Line Evaluation of Mobile-Centric Indoor Positioning Systems: The Experiences from the 2017 IPIN Competition. Sensors 2018, 18, 487. [Google Scholar] [CrossRef] [Green Version]
- IPIN 2018. Available online: http://ipin2018.ifsttar.fr/ (accessed on 2 June 2019).
- Schon, T.B.; Gustafsson, F.; Karlsson, R. The Particle Filter in Practice. In The Oxford Handbook of Nonlinear Filtering; Oxford University Press: Oxford, NY, USA, 2011; pp. 741–767. [Google Scholar]
Characteristic | Properties | Size (bit) | Description |
---|---|---|---|
DEVID | R | 32 | DW1000 Device ID |
PARTID | R | 32 | DW1000 Lot ID |
OTPREV | R | 8 | DW1000 OTP Revision |
Range | R (Notify) | 32 | Range measured |
Pair ID | R (Notify) | 16 | The ID of the paired node |
CONF | R/W | 16 | Node settings |
Node ID | R | 16 | Node ID |
Node Setting | Value |
---|---|
Channel number | 5 |
Pulse repetition frequency (PRF) | 64 MHz |
Preamble length (PLEN) | 1024 |
Data rate (DR) | 110 kbps |
Range between nodes | 60 cm |
Messages | Size (byte) | Duration (ms) |
---|---|---|
Blink | 12 | 2.57 |
Initiate | 22 | 3.32 |
Poll | 12 | 2.57 |
Response | 16 | 2.87 |
Final | 20 | 3.18 |
Report | 16 | 2.87 |
Total | 17.38 |
Range Error (cm) | Frame Duration (ms) | |
---|---|---|
Mean | 1.6 | 43.1 |
Standard Deviation | 3.5 | 2.0 |
Frame Duration | 43.10 ms | |
Guard Interval | + | 15% |
Total Frame Duration | = | 49.57 ms |
Ranging Frame Rate | 20.17 Hz |
Channel | Node | |
---|---|---|
Number of Nodes | 18 | 5 |
Ranging Rate | 7.9 | 2.1 |
Trajectory # | Mean Absolute Error (m) | RMS Error (m) |
---|---|---|
1 | 0.37 | 0.45 |
2 | 0.57 | 0.65 |
3 | 0.60 | 0.72 |
Error Stats. (m) | Traj. #1 | Traj. #2 | Traj. #3 | Overall |
---|---|---|---|---|
Mean | 3.80 | 4.33 | 4.84 | 4.36 |
Min | 0.27 | 0.02 | 0.28 | 0.02 |
Max | 9.14 | 40.84 | 21.85 | 40.84 |
50% Percentile | 3.34 | 3.77 | 4.41 | 4.09 |
75% Percentile | 5.30 | 5.62 | 5.14 | 5.34 |
90% Percentile | 6.82 | 7.13 | 6.57 | 6.85 |
RMS | 4.28 | 6.65 | 5.75 | 5.92 |
Std. dev. | 1.97 | 5.04 | 3.10 | 4.01 |
Competition | Track | Accuracy (m) |
---|---|---|
IPIN 2015 | Smartphone (on-site) | 6.6 |
IPIN 2015 | Smartphone (off-site) | 8.3 |
IPIN 2016 | Smartphone (on-site) | 5.4 |
IPIN 2016 | Smartphone (off-site) | 5.8 |
IPIN 2017 | Smartphone (on-site) | 8.8 |
IPIN 2017 | Smartphone (off-site) | 3.48 |
IPIN 2018 | Non-Camera based Positioning (on-site) | 5.5 |
IPIN 2018 | Smartphone (off-site) | 1.1 |
Error Stats. (m) | Traj. #1 | Traj. #2 | Traj. #3 | Overall |
---|---|---|---|---|
Mean | 8.58 | 10.65 | 8.36 | 9.51 |
Min | 0.02 | 0.00 | 0.06 | 0.00 |
Max | 34.61 | 43.21 | 27.44 | 43.21 |
50% Percentile | 6.49 | 6.99 | 6.70 | 6.79 |
75% Percentile | 10.91 | 16.48 | 12.89 | 13.38 |
90% Percentile | 15.90 | 23.80 | 16.77 | 22.42 |
RMS | 10.57 | 14.32 | 10.15 | 12.43 |
Std. dev. | 6.18 | 9.58 | 5.77 | 7.99 |
Error Stats. (m) | Traj. #1 | Traj. #2 | Traj. #3 | Overall |
---|---|---|---|---|
Mean | 5.98 | 5.36 | 5.49 | 5.54 |
Min | 0.03 | 0.01 | 0.01 | 0.01 |
Max | 27.26 | 42.35 | 23.08 | 42.35 |
50% Percentile | 4.44 | 4.96 | 4.84 | 4.81 |
75% Percentile | 8.97 | 6.94 | 6.35 | 7.06 |
90% Percentile | 11.16 | 10.00 | 9.02 | 10.36 |
RMS | 7.30 | 6.92 | 6.54 | 6.90 |
Std. dev. | 4.18 | 4.37 | 3.55 | 4.11 |
Error Stats. (m) | Standalone (Full Sensors) | Collaborative (Full Sensors) | Collaborative (No Sensors) | Random-Walk |
---|---|---|---|---|
Mean | 4.36 | 5.54 | 9.51 | 18.46 |
Min | 0.02 | 0.01 | 0.00 | 0.25 |
Max | 40.84 | 42.35 | 43.21 | 43.79 |
50% Percentile | 4.09 | 4.81 | 6.79 | 17.89 |
75% Percentile | 5.34 | 7.06 | 13.38 | 26.57 |
90% Percentile | 6.85 | 10.36 | 22.42 | 32.63 |
RMS | 5.92 | 6.90 | 12.43 | 21.60 |
Std. dev. | 4.01 | 4.11 | 7.99 | 11.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakr, M.; Masiero, A.; El-Sheimy, N. LocSpeck: A Collaborative and Distributed Positioning System for Asymmetric Nodes Based on UWB Ad-Hoc Network and Wi-Fi Fingerprinting. Sensors 2020, 20, 78. https://doi.org/10.3390/s20010078
Sakr M, Masiero A, El-Sheimy N. LocSpeck: A Collaborative and Distributed Positioning System for Asymmetric Nodes Based on UWB Ad-Hoc Network and Wi-Fi Fingerprinting. Sensors. 2020; 20(1):78. https://doi.org/10.3390/s20010078
Chicago/Turabian StyleSakr, Mostafa, Andrea Masiero, and Naser El-Sheimy. 2020. "LocSpeck: A Collaborative and Distributed Positioning System for Asymmetric Nodes Based on UWB Ad-Hoc Network and Wi-Fi Fingerprinting" Sensors 20, no. 1: 78. https://doi.org/10.3390/s20010078
APA StyleSakr, M., Masiero, A., & El-Sheimy, N. (2020). LocSpeck: A Collaborative and Distributed Positioning System for Asymmetric Nodes Based on UWB Ad-Hoc Network and Wi-Fi Fingerprinting. Sensors, 20(1), 78. https://doi.org/10.3390/s20010078