Deep-Learning-Based Analysis of Electronic Skin Sensing Data
<p>Overview diagram of the sensors, process flows, and applications of deep-learning-based e-skin. Image representing pressure was reproduced with permission from ref [<a href="#B30-sensors-25-01615" class="html-bibr">30</a>]. Copyright 2023, Springer Nature. Image representing temperature was reproduced with permission from ref [<a href="#B31-sensors-25-01615" class="html-bibr">31</a>]. Copyright 2021, Springer Nature. Image representing electrophysiological was reproduced with permission from ref [<a href="#B32-sensors-25-01615" class="html-bibr">32</a>]. Copyright 2023, John Wiley and Sons. Image representing electrophysiological was reproduced with permission from ref [<a href="#B33-sensors-25-01615" class="html-bibr">33</a>]. Copyright 2021, John Wiley and Sons. Left image representing health monitoring was reproduced with permission from ref [<a href="#B34-sensors-25-01615" class="html-bibr">34</a>]. Copyright 2023, Elsevier. Right image representing health monitoring was reproduced with permission from ref [<a href="#B35-sensors-25-01615" class="html-bibr">35</a>]. Copyright 2022, John Wiley and Sons. Left image representing human–machine interaction was reproduced with permission from ref [<a href="#B10-sensors-25-01615" class="html-bibr">10</a>]. Copyright 2024, John Wiley and Sons. Right image representing human–machine interaction was reproduced with permission from ref [<a href="#B36-sensors-25-01615" class="html-bibr">36</a>]. Copyright 2022, Elsevier.</p> "> Figure 2
<p>Schematic diagram of common pressure sensing mechanisms [<a href="#B57-sensors-25-01615" class="html-bibr">57</a>]. (<b>a</b>) Resistive, (<b>b</b>) capacitive, (<b>c</b>) piezoelectric, (<b>d</b>) triboelectric. Copyright 2024, OAE Publishing Inc.</p> "> Figure 3
<p>Temperature sensors based on bionic design. (<b>a</b>) Jellyfish-inspired sensor device schematic. Machine learning can be used to decouple temperature and pressure by analyzing capacitance and resistance signals under different conditions [<a href="#B64-sensors-25-01615" class="html-bibr">64</a>]. Copyright 2024, John Wiley and Sons. (<b>b</b>) Flowchart of DMSTS preparation based on centipede’s foot and schematic diagram of DMSTS bionic structure sensing layer [<a href="#B65-sensors-25-01615" class="html-bibr">65</a>]. Copyright 2024, John Wiley and Sons.</p> "> Figure 4
<p>Design of the nepenthes-inspired hydrogel hybrid system [<a href="#B74-sensors-25-01615" class="html-bibr">74</a>]. (<b>a</b>) Schematic of the hydrogel system on human skin for ECG recording, with inset showing sweat-wicking NIH layer. (<b>b</b>) Exploded 3D model of the NIH hybrid system. (<b>c</b>) ECG signals from resting and exercising states displayed on the app. (<b>d</b>) Nepenthes-inspired microstructures of the hydrogel interface. (<b>e</b>,<b>f</b>) SEM image (<b>e</b>) and photograph (<b>f</b>) of nepenthes lip. (<b>g</b>) NIH network composition schematic. (<b>h</b>) Hydrogel/skin adhesion mechanism. (<b>i</b>) Nepenthes-inspired structure design of the hydrogel interface layer. α and β represent the cone angle of microgrooves and the wedge angle of microcolumns, respectively. (<b>j</b>) Electrical architecture of the NIH hybrid system. (<b>k</b>) Methylene blue droplets on NIH layer (<b>i</b>) and undergo directional transport (<b>ii</b>). (<b>l</b>) System/skin coupling during running (<b>i</b>,<b>ii</b>) and hydrogel/electrode interface under bending (<b>iii</b>). Scale bars: 25 µm (<b>e</b>), 4 cm (<b>f</b>), 5 mm (<b>k</b>,<b>l</b>(<b>iii</b>)), 50 mm (<b>l</b>(<b>i</b>)), 10 mm (<b>l</b>(<b>ii</b>)). Copyright 2024, John Wiley and Sons.</p> "> Figure 5
<p>Human activity recognition and user identification using the deep learning method [<a href="#B34-sensors-25-01615" class="html-bibr">34</a>]. (<b>a</b>) A 1D-CNN system architecture for activity recognition and user identification. Confusion matrices for (<b>b</b>) activity prediction (99% accuracy) and (<b>c</b>) user prediction (99% accuracy). Photographs of user 1 during (<b>d</b>) walking, (<b>e</b>) running, and (<b>f</b>) jumping, with insets showing correct identification and activity. (<b>g</b>) Photograph of the processing circuit and TENG sensors on the shoe insole for data collection. Copyright 2023, Elsevier.</p> "> Figure 6
<p>Facial EMG monitoring by PLPG and machine learning for emotion analysis [<a href="#B166-sensors-25-01615" class="html-bibr">166</a>]. (<b>a</b>) Schematic diagram of the YOLOv3 algorithm backbone network consisting of three upsamples that output three feature maps: y1, y2, y3. (<b>b</b>) YOLOv3 training loss vs. epochs. (<b>c</b>) Confusion matrix for 4 perspiration categories. (<b>d</b>) Images of perspiration categorization results. Copyright 2023, John Wiley and Sons.</p> "> Figure 7
<p>Signal decoupling and simultaneous recognition model [<a href="#B45-sensors-25-01615" class="html-bibr">45</a>]. (<b>a</b>) Architecture of the decoupling and 1D-CNN-based recognition model for feature extraction and classification. (<b>b</b>) Sixteen standard objects from the cross-pairing of four materials (copper, cotton, resin, paper) and four textures. (<b>c</b>) Sample sensing signals and corresponding decoupled features. (<b>d</b>) Confusion matrix for material recognition (4 materials). (<b>e</b>) Confusion matrix for texture recognition (4 textures). (<b>f</b>) Confusion matrix for merged recognition of the 16 objects in (<b>b</b>). Copyright 2022, Elsevier.</p> "> Figure 8
<p>Realization of hand gesture recognition by deep-learning-based algorithm [<a href="#B10-sensors-25-01615" class="html-bibr">10</a>]. (<b>a</b>) Process of hand gesture recognition with deep convolutional neural networks (DCNNs). (<b>b</b>) Three-dimensional plot of test accuracy vs. epochs and training ratios. (<b>c</b>) Accuracy rate transition with increasing epochs. (<b>d</b>) Loss rate transition with increasing epochs. (<b>e</b>) Confusion matrix for DCNNs. (<b>f</b>) Confusion matrix for support vector machines. (<b>g</b>) Confusion matrix for K-nearest neighbors. Copyright 2024, John Wiley and Sons.</p> "> Figure 9
<p>Facial EMG monitoring by PLPG and machine learning for emotion analysis [<a href="#B11-sensors-25-01615" class="html-bibr">11</a>]. (<b>a</b>) Main muscles for emotion expression. (<b>b</b>) PLPG with M-3 pattern electrodes for fEMG acquisition. (<b>c</b>,<b>d</b>) Representative fEMG signals and extracted integrated EMG for positivee (<b>c</b>) and negative (<b>d</b>) emotions. (<b>e</b>) Machine learning flowchart for emotion classification. (<b>f</b>–<b>h</b>) Thermogram of fEMG correlation coefficients for positive (<b>f</b>), neutral (<b>g</b>), and negative (<b>h</b>) emotions, with classification labels in the 27th column. (<b>i</b>) Confusion matrix for classification accuracy. (<b>j</b>) LSTM identification results. Copyright 2024, John Wiley and Sons.</p> "> Figure 10
<p>ML-enabled automatic grasped objects recognition system [<a href="#B173-sensors-25-01615" class="html-bibr">173</a>]. (<b>a</b>) A 1D-CNN framework. (<b>b</b>) Fifteen-channel spectra from TENG system for 6 spherical and 3 oval objects. (<b>c</b>) Confusion map for spherical and oval objects. (<b>d</b>) Manipulator grasping 5 elongated objects vertically and horizontally. (<b>e</b>) Deformation and contact map of manipulator with T-TENG patches. The marks of five-pointed star represent the contact positions on the T-TENG sensor patches integrated on three pneumatic fingers. (<b>f</b>) t-SNE visualization framework. (<b>g</b>) t-SNE results for vertical and horizontal grasps. (<b>h</b>) Confusion map for 5 elongated objects at two grasping angles. Copyright 2023, John Wiley and Sons.</p> ">
Abstract
:1. Introduction
2. Data Sources of Electronic Skin
2.1. Pressure Sensors: Decoding Tactile Patterns
2.2. Temperature Sensors: Evaluating Thermal Dynamics and Environmental Characterization
2.3. Electrophysiological Sensors: Interpreting the Dynamic Patterns of Physiological Signals
2.4. Optical Sensors: From Vision to Biometric Information
3. Characterization of Electronic Skin Sensing Data
3.1. Higher Dimensionality
3.2. Temporal Characterization and Dynamic Dependencies
3.3. Noise and Artifacts
3.4. Multimodal Characteristics and Fusion Challenges
4. Deep Learning Methods in Data Analytics
4.1. Basic Concepts of Modeling and Different Application Scenarios
4.1.1. Convolutional Neural Networks
- Convolutional Layer: This is the core component of a CNN, which is responsible for extracting local features from the input data using multiple filters. Each convolutional kernel slides across the input data to generate a feature map, capturing important spatial information such as edges, corners, and textures [116,117,118]. Due to the local connectivity property, CNNs can effectively reduce the number of parameters and computational complexity.
- Activation Function: After the convolutional layer, a nonlinear activation function (e.g., ReLU, Sigmoid, or Tanh) is typically applied to introduce nonlinearity. This enables the network to learn more complex feature representations, capture higher-order patterns in the input data, and improve the model’s expressive power [119].
- Pooling Layer: The pooling layer reduces the size and computational complexity of the feature map by downsampling while enhancing the invariance of the features. This helps prevent overfitting and improves the model’s ability to tolerate input deformations such as rotations or displacements.
- Fully Connected Layers: After multiple convolutional and pooling layers, the features are flattened and passed through one or more fully connected layers. These layers map the extracted features to the final output, such as classification labels or regression values, allowing the model to make the final decision.
4.1.2. Recurrent Neural Networks and Their Variants
- Input Layer: Receives time series data as inputs, typically shaped as the number of samples, time steps, and number of features.
- Hidden Layer: Recursively memorizes and updates information from previous time steps. The hidden state at each time step depends not only on the current input but also on the hidden state from the previous time step. This structure allows the RNN to capture temporal relationships in sequential data.
- Output Layer: Generates the prediction result for the current time step based on the hidden state, ensuring continuous information flow.
- Long Short-Term Memory: LSTM networks introduce memories that share the same shape as hidden states and are used to store additional information [108]. LSTM controls the flow of information via forget gates, input gates, and output gates. The forget gate decides which information should be discarded, the input gate selects the new information to be added, and the output gate controls the output of the hidden state. The LSTM architecture allows it to efficiently capture long-term dependencies in time series data, which is particularly important for physiological signal monitoring and anomaly detection.
- Gated Recurrent Unit: A GRU is a simplified version of an LSTM, merging input and forget gates to reduce the model’s complexity [109]. Due to their reduced number of parameters, GRUs are widely used in scenarios requiring faster computational speeds, such as real-time motion pattern recognition.
4.1.3. Transformer
- Multi-head Self-attention Mechanism: This mechanism allows the model to compute the relevance of each position in the input sequence, adaptively focusing on information from different positions. This helps the model capture long-range dependencies and context, making it especially well-suited for processing long sequences of data.
- Feed-forward Neural Network: After each self-attention layer, there is a feed-forward neural network responsible for enhancing and transforming the representation of each position. This network typically consists of two linear transformation layers and an activation function, allowing the extracted features to have rich expressive power.
- Layer Normalization and Residual Connections: Between the self-attention layers and the feed-forward networks, layer normalization is applied to improve training stability and convergence speed, while residual connections help reduce the difficulty of training deep networks.
4.1.4. Self-Supervised Learning and Transfer Learning
4.2. Data Preprocessing and Feature Extraction
4.2.1. Data Cleaning and Noise Reduction
4.2.2. Feature Extraction
5. Key Applications of Deep-Learning-Powered E-Skin
5.1. Cardiovascular Disease Monitoring
5.2. Elderly Care
5.3. Sweat Monitoring
5.4. Texture Recognition
5.5. Gesture Recognition
5.6. Emotion Recognition
5.7. Virtual Shopping
6. Challenges and Prospects
Category | Challenges | Solutions and Prospects | Reference(s) |
---|---|---|---|
Data Standardization and Model Generalizability | Differences in architecture, sampling frequency, and data formats Decreased model accuracy in cross-platform training High-dimensional, multimodal, non-stationary data | Establish standardized protocols for sensor calibration, feature extraction, and data transmission Implement dynamic adaptation frameworks based on meta-learning Promoting the IEEE Smart Sensor Interface Protocol Development of dynamic optimization algorithms for multi-source data fusion | [174,176,177] |
Lack of High-Quality Labeled Datasets | High labeling costs for large datasets Small sample sizes limit model training | Combining unsupervised learning and weakly supervised fine-tuning techniques Combining contrast learning with small labeled datasets for better performance Improve methods for sharing datasets | [176,179,180] |
Computational Performance | Larger model parameters require high computational resources Need for real-time processing and privacy | Implement edge AI for real-time processing and decision-making on e-skin Leveraging cloud AI for big dataset analysis with federated learning and privacy-preserving technologies Further development of edge AI for real-time performance Protecting privacy through distributed learning and non-circulating data | [181] |
AI Model Interpretability | Lack of an intuitive explanation of the decision-making process | Developing transparent AI models with attention mechanisms, interpretable neural networks, or causal inference models Focusing on AI transparency to build trust in medical and health applications Integrating biologically inspired attention mechanisms | [182,183,184,185,186] |
Behavioral Prediction | Lack of ability to predict future user behavior, limiting AI capabilities in dynamic scenarios | Introducing neuromorphic computing to predict user actions based on historical data, using spiking neural networks for low-latency responses Enhancing prediction capabilities for prosthetics, posture prediction, and rehabilitation | [187,188] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hammock, M.L.; Chortos, A.; Tee, B.C.-K.; Tok, J.B.-H.; Bao, Z. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Adv. Mater. 2013, 25, 5997–6038. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Hou, J.; Xiao, X.; Wan, R.; Ge, G.; Zheng, W.; Chen, C.; Cao, J.; Wang, J.; Liu, C.; et al. Self-healing electrical bioadhesive interface for electrophysiology recording. J. Colloid Interface Sci. 2024, 654, 639–648. [Google Scholar] [CrossRef]
- Li, X.; Qi, B.; Wan, X.; Zhang, J.; Yang, W.; Xiao, Y.; Mao, F.; Cai, K.; Huang, L.; Zhou, J. Electret-based flexible pressure sensor for respiratory diseases auxiliary diagnosis system using machine learning technique. Nano Energy 2023, 114, 108652. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Z.; Jia, Q.; Xiong, J.; Wang, H. Bio-Skin-Inspired Flexible Pressure Sensor Based on Carbonized Cotton Fabric for Human Activity Monitoring. Sensors 2024, 24, 4321. [Google Scholar] [CrossRef] [PubMed]
- Alex, M.; Khan, K.R.B.; Al-Othman, A.; Al-Sayah, M.H.; Al Nashash, H. MXene-Based Flexible Electrodes for Electrophysiological Monitoring. Sensors 2024, 24, 3260. [Google Scholar] [CrossRef]
- Xiao, X.; Xiao, X.; Zhou, Y.; Zhao, X.; Chen, G.; Liu, Z.; Wang, Z.; Lu, C.; Hu, M.; Nashalian, A.; et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 2021, 7, eabl3742. [Google Scholar] [CrossRef]
- Yu, J.; Ai, M.; Liu, C.; Bi, H.; Wu, X.; Ying, W.B.; Yu, Z. Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications. Sensors 2025, 25, 76. [Google Scholar] [CrossRef] [PubMed]
- Ock, I.W.; Zhao, X.; Wan, X.; Zhou, Y.; Chen, G.; Chen, J. Boost the voltage of a magnetoelastic generator via tuning the magnetic induction layer resistance. Nano Energy 2023, 109, 108298. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Xu, J.; Chen, G.; Fang, Y.; Tat, T.; Xiao, X.; Song, Y.; Li, S.; Chen, J. Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 2021, 12, 6755. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, J.; Cheng, Y.; Zhang, J.; Shi, Y.; Pan, L. High-accuracy dynamic gesture recognition: A universal and self-adaptive deep-learning-assisted system leveraging high-performance ionogels-based strain sensors. SmartMat 2024, 5, e1269. [Google Scholar] [CrossRef]
- Du, X.; Wang, H.; Wang, Y.; Cao, Z.; Yang, L.; Shi, X.; Zhang, X.; He, C.; Gu, X.; Liu, N. An Ultra-Conductive and Patternable 40 nm-Thick Polymer Film for Reliable Emotion Recognition. Adv. Mater. 2024, 36, 2403411. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xiao, X.; Manshaii, F.; Ren, D.; Li, X.; Yin, J.; Li, Q.; Zhang, X.; Xiong, S.; Xi, Y.; et al. A dual-symmetry triboelectric acoustic sensor with ultrahigh sensitivity and working bandwidth. Nano Energy 2024, 126, 109638. [Google Scholar] [CrossRef]
- Menghini, L.; Gianfranchi, E.; Cellini, N.; Patron, E.; Tagliabue, M.; Sarlo, M. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Psychophysiology 2019, 56, e13441. [Google Scholar] [CrossRef]
- Singhal, C.M.; Kaushik, V.; Awasthi, A.; Zalke, J.B.; Palekar, S.; Rewatkar, P.; Srivastava, S.K.; Kulkarni, M.B.; Bhaiyya, M.L. Deep Learning-Enhanced Portable Chemiluminescence Biosensor: 3D-Printed, Smartphone-Integrated Platform for Glucose Detection. Bioengineering 2025, 12, 119. [Google Scholar] [CrossRef]
- Quer, G.; Radin, J.M.; Gadaleta, M.; Baca-Motes, K.; Ariniello, L.; Ramos, E.; Kheterpal, V.; Topol, E.J.; Steinhubl, S.R. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 2021, 27, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Massari, L.; Fransvea, G.; D’Abbraccio, J.; Filosa, M.; Terruso, G.; Aliperta, A.; D’Alesio, G.; Zaltieri, M.; Schena, E.; Palermo, E.; et al. Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin. Nat. Mach. Intell. 2022, 4, 425–435. [Google Scholar] [CrossRef]
- Cao, L.; Ye, C.; Zhang, H.; Yang, S.; Shan, Y.; Lv, Z.; Ren, J.; Ling, S. An Artificial Motion and Tactile Receptor Constructed by Hyperelastic Double Physically Cross-Linked Silk Fibroin Ionoelastomer. Adv. Funct. Mater. 2023, 33, 2301404. [Google Scholar] [CrossRef]
- Li, G.; Zhu, R. A Multisensory Tactile System for Robotic Hands to Recognize Objects. Adv. Mater. Technol. 2019, 4, 1900602. [Google Scholar] [CrossRef]
- Hughes, J.; Spielberg, A.; Chounlakone, M.; Chang, G.; Matusik, W.; Rus, D. A Simple, Inexpensive, Wearable Glove with Hybrid Resistive-Pressure Sensors for Computational Sensing, Proprioception, and Task Identification. Adv. Intell. Syst. 2020, 2, 2000002. [Google Scholar] [CrossRef]
- Qiu, Y.; Sun, S.; Wang, X.; Shi, K.; Wang, Z.; Ma, X.; Zhang, W.; Bao, G.; Tian, Y.; Zhang, Z.; et al. Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand. NPJ Flex. Electron. 2022, 6, 45. [Google Scholar] [CrossRef]
- Yang, Q.; Jin, W.; Zhang, Q.; Wei, Y.; Guo, Z.; Li, X.; Yang, Y.; Luo, Q.; Tian, H.; Ren, T.-L. Mixed-modality speech recognition and interaction using a wearable artificial throat. Nat. Mach. Intell. 2023, 5, 169–180. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Y.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B.; Palacios, T.; Torralba, A.; Matusik, W. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201. [Google Scholar] [CrossRef]
- Xu, C.; Solomon, S.A.; Gao, W. Artificial intelligence-powered electronic skin. Nat. Mach. Intell. 2023, 5, 1344–1355. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, J.; Li, B.; Hu, W.; Ding, J.; Li, L.; Maybank, S. Cross-Architecture Knowledge Distillation. Int. J. Comput. Vis. 2024, 132, 2798–2824. [Google Scholar] [CrossRef]
- Shulaker, M.M.; Hills, G.; Park, R.S.; Howe, R.T.; Saraswat, K.; Wong, H.S.P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78. [Google Scholar] [CrossRef]
- Fu, X.; Cheng, W.; Wan, G.; Yang, Z.; Tee, B.C.K. Toward an AI Era: Advances in Electronic Skins. Chem. Rev. 2024, 124, 9899–9948. [Google Scholar] [CrossRef]
- McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.Y. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Zhang, Y.; Lu, Q.; He, J.; Huo, Z.; Zhou, R.; Han, X.; Jia, M.; Pan, C.; Wang, Z.L.; Zhai, J. Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk. Nat. Commun. 2023, 14, 1252. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, B.; Zhang, B.; Liu, J.; Zhang, Z.; Wang, S.; Luo, Y.; Zhao, L.; Shi, P.; Lin, Q.; et al. A thin-film temperature sensor based on a flexible electrode and substrate. Microsyst. Nanoeng. 2021, 7, 42. [Google Scholar] [CrossRef]
- Song, Y.; Ren, W.; Zhang, Y.; Liu, Q.; Peng, Z.; Wu, X.; Wang, Z. Synergetic Monitoring of both Physiological Pressure and Epidermal Biopotential Based on a Simplified on-Skin-Printed Sensor Modality. Small 2023, 19, 2303301. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Z.; Pan, J.; Wang, Y.; Zhang, L.; Tong, L. Finger-Skin-Inspired Flexible Optical Sensor for Force Sensing and Slip Detection in Robotic Grasping. Adv. Mater. Technol. 2021, 6, 2100285. [Google Scholar] [CrossRef]
- Shrestha, K.; Pradhan, G.B.; Bhatta, T.; Sharma, S.; Lee, S.; Song, H.; Jeong, S.; Park, J.Y. Intermediate nanofibrous charge trapping layer-based wearable triboelectric self-powered sensor for human activity recognition and user identification. Nano Energy 2023, 108, 108180. [Google Scholar] [CrossRef]
- Xin, M.; Yu, T.; Jiang, Y.; Tao, R.; Li, J.; Ran, F.; Zhu, T.; Huang, J.; Zhang, J.; Zhang, J.-H.; et al. Multi-vital on-skin optoelectronic biosensor for assessing regional tissue hemodynamics. SmartMat 2023, 4, e1157. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Dai, F.; Zhao, J.; Li, S.; Shi, Y.; Li, W.; Geng, L.; Ye, M.; Chen, X.; et al. Wearable five-finger keyboardless input system based on silk fibroin electronic skin. Nano Energy 2022, 103, 107764. [Google Scholar] [CrossRef]
- Zhi, C.; Shi, S.; Zhang, S.; Si, Y.; Yang, J.; Meng, S.; Fei, B.; Hu, J. Bioinspired All-Fibrous Directional Moisture-Wicking Electronic Skins for Biomechanical Energy Harvesting and All-Range Health Sensing. Nano-Micro Lett. 2023, 15, 60. [Google Scholar] [CrossRef]
- Yang, X.; Chen, W.; Fan, Q.; Chen, J.; Chen, Y.; Lai, F.; Liu, H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. Adv. Mater. 2024, 36, 2402542. [Google Scholar] [CrossRef] [PubMed]
- Shu, S.; Wang, Z.; Chen, P.; Zhong, J.; Tang, W.; Wang, Z.L. Machine-Learning Assisted Electronic Skins Capable of Proprioception and Exteroception in Soft Robotics. Adv. Mater. 2023, 35, 2211385. [Google Scholar] [CrossRef]
- Liu, F.; Deswal, S.; Christou, A.; Shojaei Baghini, M.; Chirila, R.; Shakthivel, D.; Chakraborty, M.; Dahiya, R. Printed synaptic transistor–based electronic skin for robots to feel and learn. Sci. Robot. 2022, 7, eabl7286. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Z.; Emu, L.; Wei, P.; Chen, S.; Zhai, Z.; Kong, L.; Wang, Y.; Jiang, H. Active mechanical haptics with high-fidelity perceptions for immersive virtual reality. Nat. Mach. Intell. 2023, 5, 643–655. [Google Scholar] [CrossRef]
- Yao, K.; Zhou, J.; Huang, Q.; Wu, M.; Yiu, C.K.; Li, J.; Huang, X.; Li, D.; Su, J.; Hou, S.; et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 2022, 4, 893–903. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Cao, Y.; Wang, X.; Chen, Y.; Liu, H.; Gao, Y.; Wang, J.; Liu, C.; Wang, W.; et al. Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem. Eng. J. 2021, 403, 126431. [Google Scholar] [CrossRef]
- Ma, Z.; Xiang, X.; Shao, L.; Zhang, Y.; Gu, J. Multifunctional Wearable Silver Nanowire Decorated Leather Nanocomposites for Joule Heating, Electromagnetic Interference Shielding and Piezoresistive Sensing. Angew. Chem. Int. Ed. 2022, 61, e202200705. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Yin, J.; Wang, Z.; Lu, C.; Yang, Z.; Zhao, Z.; Lin, Z.; Wang, J.; Wu, C.; Cheng, J.; et al. A flexible triboelectric tactile sensor for simultaneous material and texture recognition. Nano Energy 2022, 93, 106798. [Google Scholar] [CrossRef]
- Luo, Y.; Abidian, M.R.; Ahn, J.-H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef]
- Sun, X.; Guo, X.; Gao, J.; Wu, J.; Huang, F.; Zhang, J.-H.; Huang, F.; Lu, X.; Shi, Y.; Pan, L. E-Skin and Its Advanced Applications in Ubiquitous Health Monitoring. Biomedicines 2024, 12, 2307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-H.; Li, Z.; Xu, J.; Li, J.; Yan, K.; Cheng, W.; Xin, M.; Zhu, T.; Du, J.; Chen, S.; et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 2022, 13, 5839. [Google Scholar] [CrossRef]
- Qian, W.; Guo, C.; Dan, H.; Zhao, H.; Wang, J.; Bowen, C.R.; Yang, Y. Temperature-Enhanced Flexo-Photovoltaic Coupled Nanogenerator for Harvesting Vibration and Light Energies. ACS Energy Lett. 2024, 9, 1907–1914. [Google Scholar] [CrossRef]
- Minhas, J.Z.; Hasan, M.A.M.; Yang, Y. Ferroelectric Materials Based Coupled Nanogenerators. Nanoenergy Adv. 2021, 1, 131–180. [Google Scholar] [CrossRef]
- Qian, W.; Wu, H.; Yang, Y. Ferroelectric BaTiO3 Based Multi-Effects Coupled Materials and Devices. Adv. Electron. Mater. 2022, 8, 2200190. [Google Scholar] [CrossRef]
- Li, T.; Qu, M.; Carlos, C.; Gu, L.; Jin, F.; Yuan, T.; Wu, X.; Xiao, J.; Wang, T.; Dong, W.; et al. High-Performance Poly(vinylidene difluoride)/Dopamine Core/Shell Piezoelectric Nanofiber and Its Application for Biomedical Sensors. Adv. Mater. 2021, 33, 2006093. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.M.; Cardoso, V.F.; Martins, P.; Correia, D.M.; Gonçalves, R.; Costa, P.; Correia, V.; Ribeiro, C.; Fernandes, M.M.; Martins, P.M.; et al. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem. Rev. 2023, 123, 11392–11487. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zheng, X.; Zhong, X.; Cui, Q.; Zhang, S.; Wen, X.; Heng, B.C.; He, S.; Shen, Y.; Zhang, J.; et al. Manipulation of Heterogeneous Surface Electric Potential Promotes Osteogenesis by Strengthening RGD Peptide Binding and Cellular Mechanosensing. Adv. Mater. 2023, 35, 2209769. [Google Scholar] [CrossRef]
- Sundaram, S.; Kellnhofer, P.; Li, Y.; Zhu, J.-Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702. [Google Scholar] [CrossRef]
- Guo, H.; Tan, Y.J.; Chen, G.; Wang, Z.; Susanto, G.J.; See, H.H.; Yang, Z.; Lim, Z.W.; Yang, L.; Tee, B.C.K. Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 2020, 11, 5747. [Google Scholar] [CrossRef]
- Zhu, P.; Li, Z.; Pang, J.; He, P.; Zhang, S. Latest developments and trends in electronic skin devices. Soft Sci. 2024, 4, 17. [Google Scholar] [CrossRef]
- Kumaresan, Y.; Ozioko, O.; Dahiya, R. Multifunctional Electronic Skin With a Stack of Temperature and Pressure Sensor Arrays. IEEE Sens. J. 2021, 21, 26243–26251. [Google Scholar] [CrossRef]
- Zhao, X.; Long, Y.; Yang, T.; Li, J.; Zhu, H. Simultaneous High Sensitivity Sensing of Temperature and Humidity with Graphene Woven Fabrics. ACS Appl. Mater. Interfaces 2017, 9, 30171–30176. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Deo, K.A.; Lee, H.P.; Soukar, J.; Namkoong, M.; Tian, L.; Jaiswal, A.; Gaharwar, A.K. 3D Printed Electronic Skin for Strain, Pressure and Temperature Sensing. Adv. Funct. Mater. 2024, 34, 2313575. [Google Scholar] [CrossRef]
- You, I.; Mackanic, D.G.; Matsuhisa, N.; Kang, J.; Kwon, J.; Beker, L.; Mun, J.; Suh, W.; Kim, T.Y.; Tok, J.B.-H.; et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 2020, 370, 961–965. [Google Scholar] [CrossRef]
- Shin, J.; Jeong, B.; Kim, J.; Nam, V.B.; Yoon, Y.; Jung, J.; Hong, S.; Lee, H.; Eom, H.; Yeo, J.; et al. Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration. Adv. Mater. 2020, 32, 1905527. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.Y.; Zhou, J.; Lubineau, G. A highly stretchable strain-insensitive temperature sensor exploits the Seebeck effect in nanoparticle-based printed circuits. J. Mater. Chem. A 2019, 7, 24493–24501. [Google Scholar] [CrossRef]
- Ren, H.; Li, W.; Li, H.; Ding, Y.; Li, J.; Feng, Y.; Su, Z.; Zhang, X.; Jiang, L.; Liu, H.; et al. Jellyfish-Inspired High-Sensitivity Pressure-Temperature Sensor. Adv. Funct. Mater. 2024, 2417715. [Google Scholar] [CrossRef]
- Guo, X.; Niu, Y.; Yin, Z.; Wang, D.; Liu, L.; Tang, Y.; Li, X.; Zhang, Y.; Li, Y.; Zhang, T.; et al. Bionic Microstructure-Inspired Dual-Mode Flexible Sensor with Photothermal Effect for Ultrasensitive Temperature and Strain Monitoring. Adv. Mater. Technol. 2024, 9, 2400701. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Cai, P.; Luo, Y.; Cui, Z.; Loh, X.J.; Chen, X. Artificial Sense Technology: Emulating and Extending Biological Senses. ACS Nano 2021, 15, 18671–18678. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef]
- Zhang, L.; Kumar, K.S.; He, H.; Cai, C.J.; He, X.; Gao, H.; Yue, S.; Li, C.; Seet, R.C.-S.; Ren, H.; et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683. [Google Scholar] [CrossRef]
- Li, Y.; Matsumura, G.; Xuan, Y.; Honda, S.; Takei, K. Stretchable Electronic Skin using Laser-Induced Graphene and Liquid Metal with an Action Recognition System Powered by Machine Learning. Adv. Funct. Mater. 2024, 34, 2313824. [Google Scholar] [CrossRef]
- Tang, X.; Yang, J.; Luo, J.; Cheng, G.; Sun, B.; Zhou, Z.; Zhang, P.; Wei, D. A graphene flexible pressure sensor based on a fabric-like groove structure for high-resolution tactile imaging. Chem. Eng. J. 2024, 495, 153281. [Google Scholar] [CrossRef]
- Zhao, C.; Fang, Y.; Chen, H.; Zhang, S.; Wan, Y.; Riaz, M.S.; Zhang, Z.; Dong, W.; Diao, L.; Ren, D.; et al. Ultrathin Mo2S3 Nanowire Network for High-Sensitivity Breathable Piezoresistive Electronic Skins. ACS Nano 2023, 17, 4862–4870. [Google Scholar] [CrossRef]
- Tian, Q.; Zhao, H.; Wang, X.; Jiang, Y.; Zhu, M.; Yelemulati, H.; Xie, R.; Li, Q.; Su, R.; Cao, Z.; et al. Hairy-Skin-Adaptive Viscoelastic Dry Electrodes for Long-Term Electrophysiological Monitoring. Adv. Mater. 2023, 35, 2211236. [Google Scholar] [CrossRef]
- Shin, J.H.; Choi, J.Y.; June, K.; Choi, H.; Kim, T.-i. Polymeric Conductive Adhesive-Based Ultrathin Epidermal Electrodes for Long-Term Monitoring of Electrophysiological Signals. Adv. Mater. 2024, 36, 2313157. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Lan, Z.; Gong, H.; Wen, J.; Pang, B.; Qiu, Y.; Zhang, Y.; Guo, W.; Bu, T.; Xie, B.; et al. A Nepenthes-Inspired Hydrogel Hybrid System for Sweat-Wicking Electrophysiological Signal Recording during Exercises. Adv. Funct. Mater. 2024, 2417841. [Google Scholar] [CrossRef]
- Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y.; et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63. [Google Scholar] [CrossRef]
- Resende, S.; Fernandes, J.; Sousa, P.C.; Calaza, C.; Frasco, M.F.; Freitas, P.P.; Goreti, F.; Sales, M. Fabrication and sensing properties of a molecularly imprinted polymer on a photonic PDMS substrate for the optical detection of C-reactive protein. Chem. Eng. J. 2024, 485, 149924. [Google Scholar] [CrossRef]
- Geng, S.; Guo, P.; Wang, J.; Zhang, Y.; Shi, Y.; Li, X.; Cao, M.; Song, Y.; Zhang, H.; Zhang, Z.; et al. Ultrasensitive Optical Detection and Elimination of Residual Microtumors with a Postoperative Implantable Hydrogel Sensor for Preventing Cancer Recurrence. Adv. Mater. 2024, 36, 2307923. [Google Scholar] [CrossRef]
- Naithani, S.; Heena; Sharma, P.; Layek, S.; Thetiot, F.; Goswami, T.; Kumar, S. Nanoparticles and quantum dots as emerging optical sensing platforms for Ni(II) detection: Recent approaches and perspectives. Coord. Chem. Rev. 2025, 524, 216331. [Google Scholar] [CrossRef]
- Lim, K.G.; Han, T.H.; Lee, T.W. Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy Environ. Sci. 2021, 14, 2009–2035. [Google Scholar] [CrossRef]
- Yeon, H.; Lee, H.; Kim, Y.; Lee, D.; Lee, Y.; Lee, J.-S.; Shin, J.; Choi, C.; Kang, J.-H.; Suh, J.M.; et al. Long-term reliable physical health monitoring by sweat pore–inspired perforated electronic skins. Sci. Adv. 2021, 7, eabg8459. [Google Scholar] [CrossRef]
- He, L.; Hu, G.; Jiang, J.; Wei, W.; Xue, X.; Fan, K.; Huang, H.; Shen, L. Highly Sensitive Tin-Lead Perovskite Photodetectors with Over 450 Days Stability Enabled by Synergistic Engineering for Pulse Oximetry System. Adv. Mater. 2023, 35, 2210016. [Google Scholar] [CrossRef]
- Shashikumar, S.P.; Shah, A.J.; Li, Q.; Clifford, G.D.; Nemati, S. A Deep Learning Approach to Monitoring and Detecting Atrial Fibrillation using Wearable Technology. In Proceedings of the 4th IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Orlando, FL, USA, 16–19 February 2017; pp. 141–144. [Google Scholar]
- Fliegans, L.; Troughton, J.; Divay, V.; Blayac, S.; Ramuz, M. Design, Fabrication and Characterisation of Multi-Parameter Optical Sensors Dedicated to E-Skin Applications. Sensors 2022, 23, 114. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Yan, Y.; He, L.; Wang, Y.; Xiong, Z.; Wang, S.; Bai, Y.; Sun, F.; Lu, Q.; et al. Multifunctional biomimetic tactile system via a stick-slip sensing strategy for human–machine interactions. NPJ Flex. Electron. 2022, 6, 46. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zhang, L.; Zhang, X.; Guo, Y.; Hao, B.; Qin, Y.; Li, Q.; Fan, L.; Dong, H.; et al. Facile preparation of porous MXene/cellulose nanofiber composite for highly-sensitive flexible piezoresistive sensors in e-skin. Chem. Eng. J. 2025, 505, 159369. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, M.; Shi, J.Q. A Survey on Deep Neural Network Pruning: Taxonomy, Comparison, Analysis, and Recommendations. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10558–10578. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Wu, Q.; Chen, Y.; Wang, X.; Xiang, Z.; Duan, J.; Wan, Y.; Yang, P. Bimodal Coupling Haptic Perceptron for Accurate Contactless Gesture Perception and Material Identification. Adv. Fiber Mater. 2024, 6, 1874–1886. [Google Scholar] [CrossRef]
- Nittala, A.S.; Steimle, J. Next Steps in Epidermal Computing: Opportunities and Challenges for Soft On-Skin Devices. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 30 April–5 May 2022; p. 389. [Google Scholar]
- Zhou, Y.; Fu, J.; Chen, Z.; Zhuge, F.; Wang, Y.; Yan, J.; Ma, S.; Xu, L.; Yuan, H.; Chan, M.; et al. Computational event-driven vision sensors for in-sensor spiking neural networks. Nat. Electron. 2023, 6, 870–878. [Google Scholar] [CrossRef]
- Su, X.; Zhang, B.; Liang, C.; Tian, M.; Zhang, T.; Bian, Z.; Miao, J.; Yang, Q.; Xu, Y.; Yu, B.; et al. Integrating Image Perception and Time-to-First-Spike Coding in MoS2 Phototransistors for Spiking Neural Network. Adv. Funct. Mater. 2024, 34, 2315323. [Google Scholar] [CrossRef]
- Banabilah, S.; Aloqaily, M.; Alsayed, E.; Malik, N.; Jararweh, Y. Federated learning review: Fundamentals, enabling technologies, and future applications. Inf. Process. Manag. 2022, 59, 103061. [Google Scholar] [CrossRef]
- Cui, T.; Qiao, Y.; Li, D.; Huang, X.; Yang, L.; Yan, A.; Chen, Z.; Xu, J.; Tan, X.; Jian, J.; et al. Multifunctional, breathable MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring system. Chem. Eng. J. 2023, 455, 140690. [Google Scholar] [CrossRef]
- Hao, Y.; Yan, Q.; Liu, H.; He, X.; Zhang, P.; Qin, X.; Wang, R.; Sun, J.; Wang, L.; Cheng, Y. A Stretchable, Breathable, And Self-Adhesive Electronic Skin with Multimodal Sensing Capabilities for Human-Centered Healthcare. Adv. Funct. Mater. 2023, 33, 2303881. [Google Scholar] [CrossRef]
- Li, X.; Zhu, P.; Zhang, S.; Wang, X.; Luo, X.; Leng, Z.; Zhou, H.; Pan, Z.; Mao, Y. A Self-Supporting, Conductor-Exposing, Stretchable, Ultrathin, and Recyclable Kirigami-Structured Liquid Metal Paper for Multifunctional E-Skin. ACS Nano 2022, 16, 5909–5919. [Google Scholar] [CrossRef] [PubMed]
- de Lima e Silva, P.C.; Severiano, C.A.; Alves, M.A.; Silva, R.; Weiss Cohen, M.; Guimarães, F.G. Forecasting in non-stationary environments with fuzzy time series. Appl. Soft Comput. 2020, 97, 106825. [Google Scholar] [CrossRef]
- Ngiam, K.Y.; Khor, I.W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019, 20, e262–e273. [Google Scholar] [CrossRef]
- Elmarakeby, H.A.; Hwang, J.; Arafeh, R.; Crowdis, J.; Gang, S.; Liu, D.; AlDubayan, S.H.; Salari, K.; Kregel, S.; Richter, C.; et al. Biologically informed deep neural network for prostate cancer discovery. Nature 2021, 598, 348–352. [Google Scholar] [CrossRef]
- Yuan, H.; Chan, S.; Creagh, A.P.; Tong, C.; Acquah, A.; Clifton, D.A.; Doherty, A. Self-supervised learning for human activity recognition using 700,000 person-days of wearable data. NPJ Digit. Med. 2024, 7, 91. [Google Scholar] [CrossRef]
- Khowaja, S.A.; Khuwaja, P.; Dharejo, F.A.; Raza, S.; Lee, I.H.; Naqvi, R.A.; Dev, K. ReFuSeAct: Representation fusion using self-supervised learning for activity recognition in next generation networks. Inf. Fusion 2024, 102, 102044. [Google Scholar] [CrossRef]
- Zhu, Z.; Su, P.; Zhong, S.; Huang, J.; Ottikkutti, S.; Tahmasebi, K.N.; Zou, Z.; Zheng, L.; Chen, D. Using a VAE-SOM architecture for anomaly detection of flexible sensors in limb prosthesis. J. Ind. Inf. Integr. 2023, 35, 100490. [Google Scholar] [CrossRef]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef]
- Li, S.Y.; Yang, M.Y.; Wu, Y.Z.; Asghar, W.; Lu, X.J.; Zhang, H.F.; Cui, E.H.; Fang, Z.J.; Shang, J.; Liu, Y.W.; et al. A flexible dual-mode sensor with decoupled strain and temperature sensing for smart robots. Mater. Horiz. 2024, 11, 6361–6370. [Google Scholar] [CrossRef]
- Jeong, Y.-K.; Baek, K.-R. Asymmetric Gait Analysis Using a DTW Algorithm with Combined Gyroscope and Pressure Sensor. Sensors 2021, 21, 3750. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Lee, J.-H.; Kim, E.; Chan, K.-Y.; Venkatesan, H.; Adegun, M.H.; Agbabiaka, O.G.; Shen, X.; Zheng, Q.; et al. Bioinspired Chromotropic Ionic Skin with In-Plane Strain/Temperature/Pressure Multimodal Sensing and Ultrahigh Stimuli Discriminability. Adv. Funct. Mater. 2022, 32, 2208362. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.; Sun, D.-W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices. Trends Food Sci. Technol. 2021, 113, 193–204. [Google Scholar] [CrossRef]
- Derry, A.; Krzywinski, M.; Altman, N. Convolutional neural networks. Nat. Methods 2023, 20, 1269–1270. [Google Scholar] [CrossRef]
- Ibrahim, R.; Shafiq, M.O. Explainable Convolutional Neural Networks: A Taxonomy, Review, and Future Directions. ACM Comput. Surv. 2023, 55, 206. [Google Scholar] [CrossRef]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Cho, K.; Merrienboer, B.v.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014. [Google Scholar]
- Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Ke, X.; Duan, Y.; Duan, Y.; Zhao, Z.; You, C.; Sun, T.; Gao, X.; Zhang, Z.; Xue, W.; Liu, X.; et al. Deep-learning-enhanced metal-organic framework e-skin for health monitoring. Device 2025, 100650. [Google Scholar] [CrossRef]
- Balestriero, R.; Ibrahim, M.; Sobal, V.; Morcos, A.S.; Shekhar, S.; Goldstein, T.; Bordes, F.; Bardes, A.; Mialon, G.; Tian, Y.; et al. A Cookbook of Self-Supervised Learning. arXiv 2023, arXiv:2304.12210. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Lindeberg, T. Scale Invariant Feature Transform. Scholarpedia 2012, 7, 10491. [Google Scholar] [CrossRef]
- Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 1962, 160, 106–154. [Google Scholar] [CrossRef]
- Innamorati, C.; Ritschel, T.; Weyrich, T.; Mitra, N.J. Learning on the Edge: Investigating Boundary Filters in CNNs. Int. J. Comput. Vis. 2020, 128, 773–782. [Google Scholar] [CrossRef]
- Liu, C.; Tupin, F.; Gousseau, Y. Training CNNs on speckled optical dataset for edge detection in SAR images. ISPRS J. Photogramm. Remote Sens. 2020, 170, 88–102. [Google Scholar] [CrossRef]
- Choi, Y.R.; Kil, R.M. Face Video Retrieval Based on the Deep CNN With RBF Loss. IEEE Trans. Image Process. 2021, 30, 1015–1029. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, L.; Zhang, Y.; Han, X.; Deveci, M.; Parmar, M. A review of convolutional neural networks in computer vision. Artif. Intell. Rev. 2024, 57, 99. [Google Scholar] [CrossRef]
- Wang, H.S.; Hong, S.K.; Han, J.H.; Jung, Y.H.; Jeong, H.K.; Im, T.H.; Jeong, C.K.; Lee, B.-Y.; Kim, G.; Yoo, C.D.; et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 2021, 7, eabe5683. [Google Scholar] [CrossRef]
- Zheng, X.T.; Yang, Z.; Sutarlie, L.; Thangaveloo, M.; Yu, Y.; Salleh, N.A.B.M.; Chin, J.S.; Xiong, Z.; Becker, D.L.; Loh, X.J.; et al. Battery-free and AI-enabled multiplexed sensor patches for wound monitoring. Sci. Adv. 2023, 9, eadg6670. [Google Scholar] [CrossRef]
- Suo, J.; Liu, Y.; Wu, C.; Chen, M.; Huang, Q.; Liu, Y.; Yao, K.; Chen, Y.; Pan, Q.; Chang, X.; et al. Wide-Bandwidth Nanocomposite-Sensor Integrated Smart Mask for Tracking Multiphase Respiratory Activities. Adv. Sci. 2022, 9, 2203565. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, H.; Cheng, J.; Zhu, F.; Liu, B.; Wei, S.; Ji, L.; Wang, Z.L. Decoding lip language using triboelectric sensors with deep learning. Nat. Commun. 2022, 13, 1401. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Tiw, P.J.; Cai, L.; Yang, Z.; Liu, C.; Zhang, T.; Ge, C.; Huang, R.; Yang, Y. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat. Commun. 2023, 14, 3695. [Google Scholar] [CrossRef]
- Yang, C.; Liu, H.; Ma, J.; Xu, M. Multimodal Flexible Sensor for the Detection of Pressing–Bending–Twisting Mechanical Deformations. ACS Appl. Mater. Interfaces 2025, 17, 2413–2424. [Google Scholar] [CrossRef]
- Pandey, R.K.; Chao, P.C.P. A Dual-Channel PPG Readout System With Motion-Tolerant Adaptability for OLED-OPD Sensors. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, D.; Wang, W.; Zhang, H.; Zhou, L. Multi-functional MXene/helical multi-walled carbon nanotubes flexible sensor for tire pressure detection and speech recognition enabled by machine learning. Chem. Eng. J. 2025, 505, 159157. [Google Scholar] [CrossRef]
- Zavala-Mondragón, L.A.; With, P.H.N.d.; Sommen, F.v.d. Image Noise Reduction Based on a Fixed Wavelet Frame and CNNs Applied to CT. IEEE Trans. Image Process. 2021, 30, 9386–9401. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; He, C.; Luo, Z.; Chen, Z.; Ye, J. Self-Supervised Learning for Generic Raman Spectrum Denoising. Anal. Chem. 2024, 96, 17476–17485. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yu, K.; Wang, M.; Ma, Y.; Peng, Y.; Chen, Z.; Zhu, W.; Shi, F.; Chen, X. Speckle Noise Reduction for OCT Images Based on Image Style Transfer and Conditional GAN. IEEE J. Biomed. Health Inform. 2022, 26, 139–150. [Google Scholar] [CrossRef]
- Qu, X.; Liu, Z.; Tan, P.; Wang, C.; Liu, Y.; Feng, H.; Luo, D.; Li, Z.; Wang, Z.L. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 2022, 8, eabq2521. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Luo, X.; Song, Z.; Bai, Y.; Zhang, B.; Zhang, G. Ultra-Robust and Sensitive Flexible Strain Sensor for Real-Time and Wearable Sign Language Translation. Adv. Funct. Mater. 2023, 33, 2303504. [Google Scholar] [CrossRef]
- Chun, S.; Kim, J.-S.; Yoo, Y.; Choi, Y.; Jung, S.J.; Jang, D.; Lee, G.; Song, K.-I.; Nam, K.S.; Youn, I.; et al. An artificial neural tactile sensing system. Nat. Electron. 2021, 4, 429–438. [Google Scholar] [CrossRef]
- Lin, S.; Hu, S.; Song, W.; Gu, M.; Liu, J.; Song, J.; Liu, Z.; Li, Z.; Huang, K.; Wu, Y.; et al. An ultralight, flexible, and biocompatible all-fiber motion sensor for artificial intelligence wearable electronics. NPJ Flex. Electron. 2022, 6, 27. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, L.; Wang, W. Learning Time-Frequency Analysis in Wireless Sensor Networks. IEEE Internet Things J. 2018, 5, 3388–3396. [Google Scholar] [CrossRef]
- Li, L.; Cai, H.; Jiang, Q.; Ji, H. An empirical signal separation algorithm for multicomponent signals based on linear time-frequency analysis. Mech. Syst. Signal Process. 2019, 121, 791–809. [Google Scholar] [CrossRef]
- Faisal, K.N.; Mir, H.S.; Sharma, R.R. Human Activity Recognition From FMCW Radar Signals Utilizing Cross-Terms Free WVD. IEEE Internet Things J. 2024, 11, 14383–14394. [Google Scholar] [CrossRef]
- Yang, C.; Wang, H.; Yang, J.; Yao, H.; He, T.; Bai, J.; Guang, T.; Cheng, H.; Yan, J.; Qu, L. A Machine-Learning-Enhanced Simultaneous and Multimodal Sensor Based on Moist-Electric Powered Graphene Oxide. Adv. Mater. 2022, 34, 2205249. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yin, L.; Jayan, H.; Jiang, S.; El-Seedi, H.R.; Zou, X.; Guo, Z. In situ self-cleaning PAN/Cu2O@Ag/Au@Ag flexible SERS sensor coupled with chemometrics for quantitative detection of thiram residues on apples. Food Chem. 2025, 473, 143032. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zou, K.; Guo, J.; Zhang, C.; Feng, J.; You, J.; Cheng, G.; Zhou, Q.; Kong, M.; Li, G.; et al. Integrated Fibrous Iontronic Pressure Sensors with High Sensitivity and Reliability for Human Plantar Pressure and Gait Analysis. ACS Nano 2024, 18, 14672–14684. [Google Scholar] [CrossRef]
- Wang, M.; Yan, Z.; Wang, T.; Cai, P.; Gao, S.; Zeng, Y.; Wan, C.; Wang, H.; Pan, L.; Yu, J.; et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 2020, 3, 563–570. [Google Scholar] [CrossRef]
- Kim, K.K.; Kim, M.; Pyun, K.; Kim, J.; Min, J.; Koh, S.; Root, S.E.; Kim, J.; Nguyen, B.-N.T.; Nishio, Y.; et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 2023, 6, 64–75. [Google Scholar] [CrossRef]
- Chen, M.; Ouyang, J.; Jian, A.; Liu, J.; Li, P.; Hao, Y.; Gong, Y.; Hu, J.; Zhou, J.; Wang, R.; et al. Imperceptible, designable, and scalable braided electronic cord. Nat. Commun. 2022, 13, 7097. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, X.; Nguyen, X.A.; Shi, Q.; Lin, F.; Chauhan, S.; Ge, Z.; Cheng, W. Hierarchically resistive skins as specific and multimetric on-throat wearable biosensors. Nat. Nanotechnol. 2023, 18, 889–897. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Wang, J.; Qin, N.; Yang, H.; Sun, K.; Hao, J.; Shu, L.; Liu, J.; Chen, Q.; et al. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat. Commun. 2022, 13, 79. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Liu, H.; Ma, X.-Y.; Wang, Z.-C.; Li, G.-P.; Han, L.; Sun, K.; Yang, Q.-S.; Ji, S.-R.; Yu, D.-L.; et al. Deep Learning Enabled High-Performance Speech Command Recognition on Graphene Flexible Microphones. ACS Appl. Electron. Mater. 2022, 4, 2306–2312. [Google Scholar] [CrossRef]
- Ge, C.; An, X.; He, X.; Duan, Z.; Chen, J.; Hu, P.; Zhao, J.; Wang, Z.; Zhang, J. Integrated Multifunctional Electronic Skins with Low-Coupling for Complicated and Accurate Human–Robot Collaboration. Adv. Sci. 2023, 10, 2301341. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, J.; Zheng, R.-K.; Zhang, J.; Wu, Y.; Wang, X.; Miao, K.; Yao, H.; Yang, L.; Zheng, H. Ferroelectric Polarization-Enhanced Performance of Flexible CuInP2S6 Piezoelectric Nanogenerator for Biomechanical Energy Harvesting and Voice Recognition Applications. Adv. Funct. Mater. 2023, 33, 2214745. [Google Scholar] [CrossRef]
- Kim, T.; Shin, Y.; Kang, K.; Kim, K.; Kim, G.; Byeon, Y.; Kim, H.; Gao, Y.; Lee, J.R.; Son, G.; et al. Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces. Nat. Commun. 2022, 13, 5815. [Google Scholar] [CrossRef]
- Jung, Y.H.; Pham, T.X.; Issa, D.; Wang, H.S.; Lee, J.H.; Chung, M.; Lee, B.-Y.; Kim, G.; Yoo, C.D.; Lee, K.J. Deep learning-based noise robust flexible piezoelectric acoustic sensors for speech processing. Nano Energy 2022, 101, 107610. [Google Scholar] [CrossRef]
- Guo, W.; Ma, Z.; Chen, Z.; Hua, H.; Wang, D.; Elhousseini Hilal, M.; Fu, Y.; Lu, P.; Lu, J.; Zhang, Y.; et al. Thin and soft Ti3C2Tx MXene sponge structure for highly sensitive pressure sensor assisted by deep learning. Chem. Eng. J. 2024, 485, 149659. [Google Scholar] [CrossRef]
- Zong, X.; Zhang, C.; Zhang, N.; Wang, Z.; Wang, J. Breathable, superhydrophobic and multifunctional Janus nanofibers for dual-mode passive thermal management/facial expression recognition with deep learning. Chem. Eng. J. 2025, 505, 159759. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, X.; Huang, X.; Liang, Q.; Deng, S.; Wu, Z.; Yao, Y.; Lu, L. A Deep Learning-Enabled Skin-Inspired Pressure Sensor for Complicated Recognition Tasks with Ultralong Life. Research 2023, 6, 0157. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Wang, R.; Wang, M.; Chen, P.; Cheng, L.; Wu, Z.; Wang, Y.; Liu, Q.; Liu, M. A Heterogeneously Integrated Spiking Neuron Array for Multimode-Fused Perception and Object Classification. Adv. Mater. 2022, 34, 2200481. [Google Scholar] [CrossRef]
- Guo, L.; Wang, T.; Wu, Z.; Wang, J.; Wang, M.; Cui, Z.; Ji, S.; Cai, J.; Xu, C.; Chen, X. Portable Food-Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. Adv. Mater. 2020, 32, 2004805. [Google Scholar] [CrossRef]
- Hu, H.; Huang, H.; Li, M.; Gao, X.; Yin, L.; Qi, R.; Wu, R.S.; Chen, X.; Ma, Y.; Shi, K.; et al. A wearable cardiac ultrasound imager. Nature 2023, 613, 667–675. [Google Scholar] [CrossRef]
- Jeong, H.; Yoo, J.-Y.; Ouyang, W.; Greane, A.L.J.X.; Wiebe, A.J.; Huang, I.; Lee, Y.J.; Lee, J.Y.; Kim, J.; Ni, X.; et al. Closed-loop network of skin-interfaced wireless devices for quantifying vocal fatigue and providing user feedback. Proc. Natl. Acad. Sci. USA 2023, 120, e2219394120. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, D.; Iliakis, P.; Tatakis, F.; Thomopoulos, K.; Dimitriadis, K.; Tousoulis, D.; Tsioufis, K. Wearable blood pressure measurement devices and new approaches in hypertension management: The digital era. J. Hum. Hypertens. 2022, 36, 945–951. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Alpert, B.; Mieke, S.; Asmar, R.; Atkins, N.; Eckert, S.; Frick, G.; Friedman, B.; Graßl, T.; Ichikawa, T.; et al. A Universal Standard for the Validation of Blood Pressure Measuring Devices. Hypertension 2018, 71, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Stafford, P.L.; Lim, D.C.; Park, S.; Kim, S.-H.; Berry, R.B.; Calhoun, D.A. Blood pressure monitoring in sleep: Time to wake up. Blood Press. Monit. 2020, 25, 61–68. [Google Scholar] [CrossRef]
- Wang, C.; Qi, B.; Lin, M.; Zhang, Z.; Makihata, M.; Liu, B.; Zhou, S.; Huang, Y.-h.; Hu, H.; Gu, Y.; et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 2021, 5, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Kireev, D.; Sel, K.; Ibrahim, B.; Kumar, N.; Akbari, A.; Jafari, R.; Akinwande, D. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 2022, 17, 864–870. [Google Scholar] [CrossRef]
- Xu, J.; Chen, W.; Liu, L.; Jiang, S.; Wang, H.; Zhang, J.; Gan, X.; Zhou, X.; Guo, T.; Wu, C.; et al. Intelligent recognition of human motion using an ingenious electronic skin based on metal fabric and natural triboelectrification. Sci. China Mater. 2024, 67, 887–897. [Google Scholar] [CrossRef]
- Choi, J.; Ghaffari, R.; Baker, L.B.; Rogers, J.A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 2018, 4, eaar3921. [Google Scholar] [CrossRef]
- Jung, W.; Han, J.; Choi, J.-W.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [Google Scholar] [CrossRef]
- Chen, H.; Xu, S.; Liu, H.; Liu, C.; Liu, H.; Chen, J.; Huang, H.; Gong, H.; Wu, J.; Tang, H.; et al. Nanomesh-YOLO: Intelligent Colorimetry E-Skin Based on Nanomesh and Deep Learning Object Detection Algorithm. Adv. Funct. Mater. 2024, 34, 2309798. [Google Scholar] [CrossRef]
- Li, G.; Liu, S.; Wang, L.; Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 2020, 5, eabc8134. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Fang, B.; Xue, H.; Liu, H.; Huang, H. A novel multi-modal tactile sensor design using thermochromic material. Sci. China Inf. Sci. 2019, 62, 214201. [Google Scholar] [CrossRef]
- Tchantchane, R.; Zhou, H.; Zhang, S.; Alici, G. A Review of Hand Gesture Recognition Systems Based on Noninvasive Wearable Sensors. Adv. Intell. Syst. 2023, 5, 2300207. [Google Scholar] [CrossRef]
- Gannouni, S.; Aledaily, A.; Belwafi, K.; Aboalsamh, H. Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification. Sci. Rep. 2021, 11, 7071. [Google Scholar] [CrossRef]
- Cross, M.P.; Hunter, J.F.; Smith, J.R.; Twidwell, R.E.; Pressman, S.D. Comparing, Differentiating, and Applying Affective Facial Coding Techniques for the Assessment of Positive Emotion. J. Posit. Psychol. 2023, 18, 420–438. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, X.; Tian, Q. Spontaneous Speech Emotion Recognition Using Multiscale Deep Convolutional LSTM. IEEE Trans. Affect. Comput. 2022, 13, 680–688. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, M.; Zhang, Z.; Chen, Z.; Shi, Q.; Shan, X.; Yeow, R.C.H.; Lee, C. Artificial Intelligence of Things (AIoT) Enabled Virtual Shop Applications Using Self-Powered Sensor Enhanced Soft Robotic Manipulator. Adv. Sci. 2021, 8, 2100230. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, M.; Yin, X.; Zhang, J.; Meijering, E.; Hu, J. Deep Learning in Diverse Intelligent Sensor Based Systems. Sensors 2023, 23, 62. [Google Scholar]
- IEEE 802.15.4-2003; IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE: Piscataway, NJ, USA, 2003.
- Hutabarat, Y.; Owaki, D.; Hayashibe, M. Recent Advances in Quantitative Gait Analysis Using Wearable Sensors: A Review. IEEE Sens. J. 2021, 21, 26470–26487. [Google Scholar] [CrossRef]
- Sun, Q.; Ge, Z. A Survey on Deep Learning for Data-Driven Soft Sensors. IEEE Trans. Ind. Inform. 2021, 17, 5853–5866. [Google Scholar] [CrossRef]
- ISO/IEC/IEEE 21451-2:2010; Information Technology—Smart Transducer Interface for Sensors and Actuators Part 2: Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats. IEEE: Piscataway, NJ, USA, 2010.
- Xiong, B.; Chen, W.; Niu, Y.; Gan, Z.; Mao, G.; Xu, Y. A Global and Local Feature fused CNN architecture for the sEMG-based hand gesture recognition. Comput. Biol. Med. 2023, 166, 107497. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tang, H.; Sun, Y.; Kong, J.; Jiang, G.; Jiang, D.; Tao, B.; Xu, S.; Liu, H. Hand gesture recognition based on convolution neural network. Clust. Comput. 2019, 22, 2719–2729. [Google Scholar] [CrossRef]
- Hu, K.; Gong, S.; Zhang, Q.; Seng, C.; Xia, M.; Jiang, S. An overview of implementing security and privacy in federated learning. Artif. Intell. Rev. 2024, 57, 204. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Dai, N.; Lei, I.M.; Li, Z.; Li, Y.; Fang, P.; Zhong, J. Recent advances in wearable electromechanical sensors—Moving towards machine learning-assisted wearable sensing systems. Nano Energy 2023, 105, 108041. [Google Scholar] [CrossRef]
- Saad, H.S.; Zaki, J.F.W.; Abdelsalam, M.M. Employing of machine learning and wearable devices in healthcare system: Tasks and challenges. Neural Comput. Appl. 2024, 36, 17829–17849. [Google Scholar] [CrossRef]
- Tang, Q.; Liang, J.; Zhu, F. A comparative review on multi-modal sensors fusion based on deep learning. Signal Process. 2023, 213, 109165. [Google Scholar] [CrossRef]
- Yap, M.H.; Hachiuma, R.; Alavi, A.; Brüngel, R.; Cassidy, B.; Goyal, M.; Zhu, H.; Rückert, J.; Olshansky, M.; Huang, X.; et al. Deep learning in diabetic foot ulcers detection: A comprehensive evaluation. Comput. Biol. Med. 2021, 135, 104596. [Google Scholar] [CrossRef]
- Xiao, X.; Yin, J.; Xu, J.; Tat, T.; Chen, J. Advances in Machine Learning for Wearable Sensors. ACS Nano 2024, 18, 22734–22751. [Google Scholar] [CrossRef]
- Yamazaki, K.; Vo-Ho, V.-K.; Bulsara, D.; Le, N. Spiking Neural Networks and Their Applications: A Review. Brain Sci. 2022, 12, 863. [Google Scholar] [CrossRef] [PubMed]
Technology | Advantages | Disadvantages | Applications | Reference(s) |
---|---|---|---|---|
CNNs | Automatic extraction of spatial features | Difficult to capture long-range dependencies | Demonstrates high classification accuracy for the analysis of pressure sensor arrays | [105,106,107] |
Parameter sharing reduces computation | Requires large amounts of labelled data | Enables tasks such as surface identification, feature acquisition, and health detection | ||
Suitable for image/matrix data | ||||
RNNs/LSTM/GRU | Highly capable of temporal modeling | Gradient vanishing/exploding (RNNs) | Real-time monitoring of changes in physiological signals to analyze health status | [108,109] |
Dynamically maintains contextual information Suitable for sequential data | Slow training | Solves the dilemma of traditional RNNs in long sequence analysis and improves accuracy and efficiency | ||
Difficult to parallelize | ||||
Transformer | Parallel computation is efficient | High consumption of computational resources | Integrates data from different sensors to infer complex patterns | [110,111] |
Self-attention captures long-range dependence | Easy overfitting for small data | Improves the processing of multimodal data | ||
Strong multimodal fusion | ||||
Self-supervised Learning | No need for large amounts of labelled data | Pre-training tasks are designed to be sensitive | Enables models to be trained efficiently by designing pre-training tasks when there are insufficient data | [112] |
Generic features learned through pre-training tasks | Migration effects are dependent on task relevance | Suitable for small-sample learning tasks to speed up the training process | ||
Transfer Learning | Reduce data requirements | Dependent on similarity between source and target tasks | Cross-scene health monitoring model migration | [113] |
Reuse pre-trained model knowledge | Possible negative migration | Sensor disparity adaptation |
Category | Targeted Parameters | Number of Model Parameters | Number of Sensor Channels | DL Models | Learning Objectives | Year | Reference |
---|---|---|---|---|---|---|---|
DL for data processing | Humidity, temperature, pressure, and UV | 4 | 105 | LSTM | Multi-signal decoupling | 2022 | [138] |
Pressure, temperature | 2 | 105 | CNN | Temperature and pressure mapping Signal decoupling | 2024 | [64] | |
Ionic liquids, photovoltaics, conductive fabric signals | 3 | 105 | Transformer | Multi-signal decoupling | 2024 | [125] | |
DL for healthcare | Directional flow of air and air vibration during respiratory activity | 1 | 106 | CNN | Cough diagnosis | 2022 | [122] |
Biomarkers of wound exudates | 5 | 106 | CNN | Wound healing monitoring | 2023 | [121] | |
EEG | 2 | 106 | LSTM | Epileptic seizure detection | 2023 | [124] | |
Friction from motion | 3 | 106 | CNN | Motion status monitoring | 2023 | [34] | |
Thiram residues | 1 | 104 | CNN | Food safety testing | 2025 | [139] | |
Plantar pressure distribution | 28 | 106 | CNN | Motion gait analysis | 2024 | [140] | |
DL for HMI | Stress on hand arrays | 548 | 107 | CNN | Recognition of grabbed items | 2019 | [55] |
Finger bending strain | 5 | 15,000 | CNN | Gesture recognition | 2020 | [141] | |
Finger bending strain | 5 | 106 | Transformer | Gesture recognition | 2022 | [142] | |
Finger bending strain | 10 | 105 | LSTM | Gesture recognition | 2022 | [143] | |
Laryngeal movement | 1 | 107 | CNN | Classification of voice and neck movements | 2023 | [144] | |
Hand pressure and ethanol gas concentration | 76 | 108 | CNN | Object recognition | 2022 | [145] | |
Esophageal muscle movement | 1 | 107 | CNN | Speech recognition | 2023 | [21] | |
Oral muscle exercise | 1 | 105 | RNN | Lip recognition | 2021 | [123] | |
Speaking voice waveforms | 1 | 106 | CNN | Speech recognition | 2022 | [146] | |
Humidity, proximity, pressure | 3 | 105 | LSTM | Object recognition | 2023 | [147] | |
Laryngeal movement | 1 | 106 | CNN | Speech recognition | 2023 | [148] | |
Hand tactile information | 2049 | 107 | CNN | Surface texture recognition | 2021 | [133] | |
Lip muscle strain | 8 | 107 | CNN | Speech recognition without voice | 2022 | [149] | |
Acoustic oscillation | 7 | 106 | CNN | Speaker identification | 2022 | [150] | |
Facial muscle signals | 2 | 105 | RNN | Emotion recognition | 2024 | [11] | |
Muscle movement signals | 1 | 105 | RNN | Classification of pronunciation | 2024 | [151] | |
Facial muscle exercise | 5 | 106 | CNN | Emotion recognition | 2025 | [152] | |
Finger bending strain | 5 | 105 | CNN | Gesture recognition | 2024 | [10] | |
Wrist rotation | 16 | 107 | CNN | Handwriting recognition | 2023 | [153] | |
Temperature, pressure | 9 | 106 | SNN | Object recognition | 2022 | [154] | |
Modulus of elasticity | 2 | 106 | CNN | Softness classification | 2022 | [20] | |
Ammonia | 60 | 105 | CNN | Food freshness monitoring | 2020 | [155] | |
Hand tactile information | 16 | 106 | CNN | Tactile mapping | 2022 | [16] | |
Strain on different parts of the body | 216 | 106 | CNN | Whole-body poses recognition | 2021 | [22] | |
Ultrasound images of the heart | 6 | 105 | CNN | Left-ventricular volume | 2023 | [156] | |
Vocal dose | 1 | 105 | CNN | Vocal fatigue | 2023 | [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Sun, X.; Li, L.; Shi, Y.; Cheng, W.; Pan, L. Deep-Learning-Based Analysis of Electronic Skin Sensing Data. Sensors 2025, 25, 1615. https://doi.org/10.3390/s25051615
Guo Y, Sun X, Li L, Shi Y, Cheng W, Pan L. Deep-Learning-Based Analysis of Electronic Skin Sensing Data. Sensors. 2025; 25(5):1615. https://doi.org/10.3390/s25051615
Chicago/Turabian StyleGuo, Yuchen, Xidi Sun, Lulu Li, Yi Shi, Wen Cheng, and Lijia Pan. 2025. "Deep-Learning-Based Analysis of Electronic Skin Sensing Data" Sensors 25, no. 5: 1615. https://doi.org/10.3390/s25051615
APA StyleGuo, Y., Sun, X., Li, L., Shi, Y., Cheng, W., & Pan, L. (2025). Deep-Learning-Based Analysis of Electronic Skin Sensing Data. Sensors, 25(5), 1615. https://doi.org/10.3390/s25051615