Fixed-Time Global Sliding Mode Control for Parallel Robot Mobile Platform with Prescribed Performance
<p>Vehicle-type mobile platform structure.</p> "> Figure 2
<p>Prescribed performance fixed-time global sliding mode control system structure diagram.</p> "> Figure 3
<p>(<b>a</b>) Performance boundaries. (<b>b</b>) Error transformation function mapping diagram.</p> "> Figure 4
<p>Results of simulation comparison experiments between FnTGSMC and FxTGSMC. (<b>a</b>) Trajectory in the X direction. (<b>b</b>) Tracking error curve in the X direction. (<b>c</b>) Tracking error curve in the Y direction. (<b>d</b>) Angular error. (<b>e</b>) Line velocity error. (<b>f</b>) Angular velocity error. (<b>g</b>) Driving wheel torque.</p> "> Figure 5
<p>Comparison results of simulation experiments between FxTGSMC and PPFxTGSMC. (<b>a</b>) Trajectory in the X direction. (<b>b</b>) Tracking error curve in the X direction. (<b>c</b>) Tracking error curve in the Y direction. (<b>d</b>) Angular error. (<b>e</b>) Line velocity error. (<b>f</b>) Angular velocity error. (<b>g</b>) Driving wheel torque.</p> "> Figure 6
<p>Results of comparison of simulation experiments between FnTGSMC and FxTGSMC. (<b>a</b>) Trajectory in the X direction. (<b>b</b>) Tracking error curve in the X direction. (<b>c</b>) Tracking error curve in the Y direction. (<b>d</b>) Angular error. (<b>e</b>) Line velocity error. (<b>f</b>) Angular velocity error. (<b>g</b>) Driving wheel torque.</p> "> Figure 7
<p>Results of comparison of simulation experiments between FxTGSMC and PPFxTGSMC. (<b>a</b>) Trajectory in the X direction. (<b>b</b>) Tracking error curve in the X direction. (<b>c</b>) Tracking error curve in the Y direction. (<b>d</b>) Angular error. (<b>e</b>) Line velocity error. (<b>f</b>) Angular velocity error. (<b>g</b>) Driving wheel torque.</p> ">
Abstract
:1. Introduction
- A fixed-time global sliding mode strategy is proposed for use in the inner loop of the system. The strategy eliminates the reaching stage of sliding mode control by adding an auxiliary function to the sliding mode variable, which improves the global robustness of the system, and the global sliding mode control combined with the fixed time theory enables the mobile platform system to converge in a fixed time, improving the system’s convergence performance.
- The prescribed performance control method is applied to constrain the error convergence characteristics of the inner loop controller and to reduce the overshoot of the tracking errors, which guarantees a good transient performance of the mobile platform system.
2. Problem Formulation and Preliminaries
2.1. Kinematic Model of the Mobile Platform of SDPR
2.2. Dynamic Model of the Mobile Platform of SDPR
3. Design of the Controllers
3.1. Kinematic Controller Design for the Mobile Platform of SDPR
3.2. Dynamic Controller Design for the Mobile Platform of SDPR
- (1)
- ;
- (2)
- ;
- (3)
- has the first-order derivative.
4. Discussion and Analysis of Simulation Results
- Finite-time global sliding mode control (FnTGSMC) is compared with fixed-time global sliding mode control (FxTGSMC).
- Fixed-time global sliding mode control (FxTGSMC) is compared with the prescribed performance fixed-time global sliding mode control (PPFxTGSMC).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, Y.; Gao, G.Q. A Fast Finite-Time Composite Control with Dynamic Prescribed Performance for Tracking in Task Space of Stewart Parallel Mechanism. IEEE Trans. Autom. Sci. Eng. 2024, 1–16. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, G.Q. Prioritizing robotic grasping of stacked fruit clusters based on stalk location in RGB-D images. Comput. Electron. Agric. 2020, 172, 14. [Google Scholar] [CrossRef]
- Koubaa, Y.; Boukattaya, M.; Damak, T. Adaptive sliding mode control for trajectory tracking of nonholonomic mobile robot with uncertain kinematics and dynamics. Appl. Artif. Intell. 2018, 32, 924–938. [Google Scholar] [CrossRef]
- Peng, S.Y.; Shi, W.X. Adaptive Fuzzy Output Feedback Control of a Nonholonomic Wheeled Mobile Robot. IEEE Access 2018, 6, 43414–43424. [Google Scholar] [CrossRef]
- Ye, H.; Wang, S. Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots with External Disturbances and Parameter Uncertainties. Int. J. Control Autom. Syst. 2020, 18, 3015–3022. [Google Scholar] [CrossRef]
- Goswami, N.K.; Padhy, P.K. Sliding mode controller design for trajectory tracking of a non-holonomic mobile robot with disturbance. Comput. Electr. Eng. 2018, 72, 307–323. [Google Scholar] [CrossRef]
- Giftthaler, M.; Farshidian, F.; Sandy, T.; Stadelmann, L.; Buchli, J. Efficient Kinematic Planning for Mobile Manipulators with Non-holonomic Constraints Using Optimal Control. arXiv 2018, arXiv:1701.08051. [Google Scholar]
- Mohareri, O.; Dhaouadi, R.; Rad, A.B. Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing 2012, 88, 54–66. [Google Scholar] [CrossRef]
- Li, Z.Y.; Zhai, J.Y. Super-twisting sliding mode trajectory tracking adaptive control of wheeled mobile robots with disturbance observer. Int. J. Robust Nonlinear Control 2022, 32, 9869–9881. [Google Scholar] [CrossRef]
- Wang, C.C.; Liu, X.F.; Yang, X.Q.; Hu, F.; Jiang, A.M.; Yang, C.G. Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a Model Predictive Control Strategy. Appl. Sci. 2018, 8, 231. [Google Scholar] [CrossRef]
- Ettouil, R.; Chabir, K.; Abdelkrim, M.N. Synergetic Control for Three-Tanks System:a Comparison with the Sliding Mode Control. In Proceedings of the 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, 21–23 December 2017; IEEE: Monastir, Tunisia, 2017; pp. 641–646. [Google Scholar]
- Lin, T.C.; Lin, H.Y.; Lin, C.J.; Chen, C.C. Mobile robot wall-following control using a behavior-based fuzzy controller in unknown environments. Iran. J. Fuzzy Syst. 2019, 16, 113–124. [Google Scholar]
- Alyoussef, F.; Kaya, I. A review on nonlinear control approaches: Sliding mode control back-stepping control and feedback linearization control. In Proceedings of the International Engineering and Natural Sciences Conference (IENSC 2019), Diyarbakır, Turkey, 6–8 November 2019; pp. 608–619. [Google Scholar]
- Ding, Y.; Wang, L.; Li, Y.W.; Li, D.L. Model predictive control and its application in agriculture: A review. Comput. Electron. Agric. 2018, 151, 104–117. [Google Scholar] [CrossRef]
- Alandoli, E.A.; Lee, T.S. A Critical Review of Control Techniques for Flexible and Rigid Link Manipulators. Robotica 2020, 38, 2239–2265. [Google Scholar] [CrossRef]
- Fathollahi, A.; Andresen, B. Multi-Machine Power System Transient Stability Enhancement Utilizing a Fractional Order-Based Nonlinear Stabilizer. Fractal Fract. 2023, 7, 808. [Google Scholar] [CrossRef]
- Santi, E.; Monti, A.; Li, D.; Proddutur, K.; Dougal, R.A. Synergetic control for power electronics applications: A comparison with the sliding mode approach. J. Circuits Syst. Comput. 2004, 13, 737–760. [Google Scholar] [CrossRef]
- Liu, C.-H.; Hsiao, M.-Y. A finite time synergetic control scheme for robot manipulators. Comput. Math. Appl. 2012, 64, 1163–1169. [Google Scholar] [CrossRef]
- Suryawanshi, P.V.; Shendge, P.D.; Phadke, S.B. Robust sliding mode control for a class of nonlinear systems using inertial delay control. Nonlinear Dyn. 2014, 78, 1921–1932. [Google Scholar] [CrossRef]
- Zhang, J.H.; Shi, P.; Xia, Y.Q. Robust Adaptive Sliding-Mode Control for Fuzzy Systems With Mismatched Uncertainties. IEEE Trans. Fuzzy Syst. 2010, 18, 700–711. [Google Scholar] [CrossRef]
- Chen, M. Robust Tracking Control for Self-balancing Mobile Robots Using Disturbance Observer. IEEE-CAA J. Autom. Sin. 2017, 4, 458–465. [Google Scholar] [CrossRef]
- Mobayen, S.; Tchier, F. Robust global second-order sliding mode control with adaptive parameter-tuning law for perturbed dynamical systems. Trans. Inst. Meas. Control 2018, 40, 2855–2867. [Google Scholar] [CrossRef]
- Xiu, C.B.; Hou, J.G.; Xu, G.W.; Zang, Y.K. Improved fast global sliding mode control based on the exponential reaching law. Adv. Mech. Eng. 2017, 9, 1687814016687967. [Google Scholar] [CrossRef]
- Chu, Y.D.; Fei, J.T.; Hou, S.X. Adaptive Global Sliding-Mode Control for Dynamic Systems Using Double Hidden Layer Recurrent Neural Network Structure. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 1297–1309. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Ren, Z.H.; Deng, C.; Wen, B.C. Adaptive fuzzy global sliding mode control for trajectory tracking of quadrotor UAVs. Nonlinear Dyn. 2019, 97, 609–627. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.W.; Shao, M. Fixed-Time-Convergent Sliding Mode Control with Sliding Mode Observer for PMSM Speed Regulation. Sensors 2024, 24, 1561. [Google Scholar] [CrossRef]
- Liu, Y.F.; Yang, J.Y.; Li, C.Z. Robust finite-time stability and stabilisation for switched linear parameter-varying systems and its application to bank-to-turn missiles. IET Contr. Theory Appl. 2015, 9, 2171–2179. [Google Scholar] [CrossRef]
- Mobayen, S. Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 2015, 80, 669–683. [Google Scholar] [CrossRef]
- Guo, Y.J.; Yu, L.; Xu, J.M. Robust Finite-Time Trajectory Tracking Control of Wheeled Mobile Robots with Parametric Uncertainties and Disturbances. J. Syst. Sci. Complex. 2019, 32, 1358–1374. [Google Scholar] [CrossRef]
- Polyakov, A. Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems. IEEE Trans. Autom. Control 2012, 57, 2106-U1. [Google Scholar] [CrossRef]
- Fathollahi, A.; Andresen, B. Adaptive Fixed-Time Control Strategy of Generator Excitation and Thyristor-Controlled Series Capacitor in Multi-Machine Energy Systems. IEEE Access 2024, 12, 100316–100327. [Google Scholar] [CrossRef]
- Feng, Q.X.; Zhang, A.C.; Zhang, X.H.; Pang, G.C.; Liu, Z. Robust Stabilization of Underactuated TORA System Based on Disturbance Observer and Fixed-Time Sliding Mode Control Method. Actuators 2022, 11, 271. [Google Scholar] [CrossRef]
- Ahmed, S.; Azar, A.T.; Tounsi, M. Adaptive Fault Tolerant Non-Singular Sliding Mode Control for Robotic Manipulators Based on Fixed-Time Control Law. Actuators 2022, 11, 353. [Google Scholar] [CrossRef]
- Guo, P.F.; Liang, Z.Y.; Wang, X.; Zheng, M.W. Adaptive trajectory tracking of wheeled mobile robot based on fixed-time convergence with uncalibrated camera parameters. ISA Trans. 2020, 99, 1–8. [Google Scholar] [CrossRef]
- Bechlioulis, C.P.; Rovithakis, G.A. Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems with Prescribed Performance. IEEE Trans. Autom. Control 2008, 53, 2090–2099. [Google Scholar] [CrossRef]
- Li, F.Z.; Liu, Y.G. Prescribed-Performance Control Design for Pure-Feedback Nonlinear Systems with Most Severe Uncertainties. SIAM J. Control Optim. 2018, 56, 517–537. [Google Scholar] [CrossRef]
- Liu, J.H.; Yi, P.; Wang, C.L. Prescribed performance tracking for a class of uncertain nonlinear systems with actuator failures. Int. J. Robust Nonlinear Control 2022, 32, 7223–7239. [Google Scholar] [CrossRef]
- Sai, H.Y.; Xu, Z.B.; Xia, C.K.; Sun, X.Y. Approximate continuous fixed-time terminal sliding mode control with prescribed performance for uncertain robotic manipulators. Nonlinear Dyn. 2022, 110, 431–448. [Google Scholar] [CrossRef]
- Bu, X.W.; Xiao, Y.; Wang, K. A prescribed performance control approach guaranteeing small overshoot for air-breathing hypersonic vehicles via neural approximation. Aerosp. Sci. Technol. 2017, 71, 485–498. [Google Scholar] [CrossRef]
- Guo, Y.J. Fixed-time disturbance observer based robust tracking control of wheeled mobile robot with multiple disturbances. Meas. Control 2023, 56, 1626–1636. [Google Scholar] [CrossRef]
- Sun, H.B.; Zong, G.D.; Cui, J.W.; Shi, K.B. Fixed-time sliding mode output feedback tracking control for autonomous underwater vehicle with constraint. Ocean Eng. 2022, 247, 10. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
mp/kg | 780 |
mω/kg | 5 |
Ip/kg·m2 | 9.45 |
Iω/kg·m2 | 0.017 |
r/m | 0.125 |
l/m | 1.23 |
b/m | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Gao, G.; Li, X. Fixed-Time Global Sliding Mode Control for Parallel Robot Mobile Platform with Prescribed Performance. Sensors 2025, 25, 1584. https://doi.org/10.3390/s25051584
Wang A, Gao G, Li X. Fixed-Time Global Sliding Mode Control for Parallel Robot Mobile Platform with Prescribed Performance. Sensors. 2025; 25(5):1584. https://doi.org/10.3390/s25051584
Chicago/Turabian StyleWang, Aojie, Guoqin Gao, and Xue Li. 2025. "Fixed-Time Global Sliding Mode Control for Parallel Robot Mobile Platform with Prescribed Performance" Sensors 25, no. 5: 1584. https://doi.org/10.3390/s25051584
APA StyleWang, A., Gao, G., & Li, X. (2025). Fixed-Time Global Sliding Mode Control for Parallel Robot Mobile Platform with Prescribed Performance. Sensors, 25(5), 1584. https://doi.org/10.3390/s25051584