Paraxial Propagation of Scattered Light Based on the Chirp Z-Transform
<p>The profile of the RC telescope system.</p> "> Figure 2
<p>The profile of the optical surface error.</p> "> Figure 3
<p>The DFT-based Wigner distribution in the RC optical system: (<b>a</b>) Wigner distribution of the multi-Gauss Schell model beam; (<b>b</b>) Wigner distribution after free space propagation; (<b>c</b>) Wigner distribution HSF errors over the surface of the primary mirror; (<b>d</b>) Wigner distribution MSF errors over the surface of the primary mirror; (<b>e</b>) Wigner distribution of phase modulated by primary mirror; (<b>f</b>) free space transmission from primary mirror to secondary mirror; (<b>g</b>) Wigner distribution HSF errors over the surface of the secondary mirror; (<b>h</b>) Wigner distribution of phase modulated by primary mirror; (<b>i</b>) free space transmission from secondary mirror to the image plane.</p> "> Figure 4
<p>CZT-based Wigner distribution in the RC optical system: (<b>a</b>) Wigner distribution of the multi-Gauss Schell model beam; (<b>b</b>) Wigner distribution after free space propagation; (<b>c</b>) Wigner distribution HSF errors over the surface of the primary mirror; (<b>d</b>) Wigner distribution MSF errors over the surface of the primary mirror; (<b>e</b>) Wigner distribution of phase modulated by primary mirror; (<b>f</b>) free space transmission from primary mirror to secondary mirror; (<b>g</b>) Wigner distribution HSF errors over the surface of the secondary mirror; (<b>h</b>) Wigner distribution of phase modulated by primary mirror; (<b>i</b>) free space transmission from secondary mirror to the image plane.</p> "> Figure 5
<p>Light intensity distribution of RC telescope system: (<b>a</b>) DFT-based light intensity distribution; (<b>b</b>) CZT-based light intensity distribution.</p> "> Figure 6
<p>Comparison of light intensity between DFT and CZT methods on the detection plane.</p> ">
Abstract
:1. Introduction
- The introduction of chirp z-transform (CZT) for simulating Wigner function propagation, offering flexible sampling capabilities and overcoming the limitations of traditional DFT-based methods.
- By focusing on the specific frequency-domain regions of interest, the proposed method enhances simulation efficiency and significantly reduces memory usage by 50%.
- The proposed method is validated through RC telescope simulations, showing a 43% improvement in runtime over DFT-based methods, demonstrating both computational efficiency and flexibility.
2. Theory
2.1. The Wigner Function
2.2. Propagation of Wigner Function in Free Space
2.3. Wigner Function in Optical Systems
2.4. The Chirp Z-Transform
2.5. Application of the Chirp Z-Transform in Wigner Propagation
3. Simulation of Partially Coherent Light Transmission
3.1. Optical System and Simulation Parameters
3.2. Simulation Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, L.; Zhao, Q.; Zhang, H.; Hu, X.-Y.; Huang, K.; Yang, J.-M.; Li, Y.-M. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light: Sci. Appl. 2019, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Saiyyed, R.; Sindhwani, M.; Ambudkar, B.; Sachdeva, S.; Kumar, A.; Shukla, M.K. Free space optical communication system: A review of practical constraints, applications, and challenges. J. Opt. Commun. 2024. [Google Scholar] [CrossRef]
- Boustany, N.N.; Boppart, S.A.; Backman, V. Microscopic imaging and spectroscopy with scattered light. Annu. Rev. Biomed. Eng. 2010, 12, 285–314. [Google Scholar] [CrossRef] [PubMed]
- Sdobnov, A.; Piavchenko, G.; Bykov, A.; Meglinski, I. Advances in dynamic light scattering imaging of blood flow. Laser Photonics Rev. 2024, 18, 2300494. [Google Scholar] [CrossRef]
- Yuan, D.; Xu, J.; Liu, Z.; Hao, S.; Shi, J.; Luo, N.; Li, S.; Liu, J.; Wan, S.; He, X. High resolution stimulated Brillouin scattering lidar using Galilean focusing system for detecting submerged objects. Opt. Commun. 2018, 427, 27–32. [Google Scholar] [CrossRef]
- Li, M.; Li, R.; Bao, S.; Xu, Z.; Li, Q.; Feng, H.; Chen, Y.; Chen, H. Imaging Chain Modeling and a Scaling Experiment for Optical Remote Sensing of Lunar Surface. IEEE Trans. Instrum. Meas. 2024, 73, 5012213. [Google Scholar] [CrossRef]
- Kraus, H.G. Huygens–Fresnel–Kirchhoff wave-front diffraction formulation: Spherical waves. J. Opt. Soc. Am. A 1989, 6, 1196–1205. [Google Scholar] [CrossRef]
- Lian, R.-Z. Generalized Huygens–Fresnel Principle. In Proceedings of the 2023 9th International Conference on Computer and Communications (ICCC), Chengdu, China, 8–11 December 2023; pp. 1616–1627. [Google Scholar]
- Lv, H.; Song, R.; Wang, D.; Zhu, X.; Lu, C.; Xu, C.; Wu, C. Weak Signal Processing in Dual-Beam Interferometric Velocity Measurements. IEEE Sens. J. 2024, 25, 989–999. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Yuksel, S.; Kutay, M.A. Linear algebraic theory of partial coherence: Discrete fields and measures of partial coherence. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 2002, 19, 1563–1571. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Pagiatakis, S.D.; Mugnozza, G.S.; Mazzanti, P. On the stochastic significance of peaks in the least-squares wavelet spectrogram and an application in GNSS time series analysis. Signal Process. 2024, 223, 109581. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, Q.; Che, X.; Qi, X.; Li, W.; Wang, S. An Image Denoising Method for a Visible Light Camera in a Complex Sky-Based Background. Appl. Sci. 2023, 13, 8484. [Google Scholar] [CrossRef]
- Su, D.; Li, K.; Shi, N. Power Quality Disturbances Recognition Using Modified S-Transform Based on Optimally Concentrated Window with Integration of Renewable Energy. Sustainability 2021, 13, 9868. [Google Scholar] [CrossRef]
- Zhang, X.D. Modern Signal Processing; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2022. [Google Scholar]
- Liu, W.; Zhai, Z.; Fang, Z. A Multisynchrosqueezing-Based S-Transform for Time-Frequency Analysis of Seismic Data. Pure Appl. Geophys. 2024, 1–17. [Google Scholar] [CrossRef]
- Bastiaans, M.M. Wigner Distribution in Optics; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Zhong, M. Propagation of Partially Coherent Light in Optical Systems. Ph.D. Thesis, The Council of the Faculty of Physics and Astronomy of the Friedrich-Schiller-Universität Jena, Jena, Germany, 2017. [Google Scholar]
- Bastiaans, M.J. Wigner distribution function and its application to first-order optics. J. Opt. Soc. Am. 2006, 69, 1710–1716. [Google Scholar] [CrossRef]
- Bastiaans, M.J. Application of the Wigner Distribution Function in Optics. In The Wigner Distribution-Theory and Applications in Signal Processing; Elsevier: Amsterdam, The Netherlands, 1997; pp. 375–426. [Google Scholar]
- Zhong, M.; Gross, H. Propagation algorithms for Wigner functions. J. Eur. Opt. Soc. Rapid Publ. 2016, 12, 7. [Google Scholar] [CrossRef]
- Eskola, S.M.; Stenman, F. Interpolation of Spectral Data Using the Shift Theorem of the Discrete Fourier Transform. Appl. Spectrosc. 1997, 51, 1179–1184. [Google Scholar] [CrossRef]
- Lu, X.; Gross, H. Wigner function-based modeling and propagation of partially coherent light in optical systems with scattering surfaces. Opt. Express 2021, 29, 14985–15000. [Google Scholar] [CrossRef]
- Lu, X. Modelling and Simulation of Light Scattering in Optical Systems. Ph.D. Thesis, Friedrich-Schiller-Universität Jena, Jena, Germany, 2021. [Google Scholar]
- Pfisterer, R.N. Approximated scatter models for stray light analysis. Opt. Photonics News 2011, 22, 16–17. [Google Scholar]
- Dittman, M.G.; Grochocki, F.; Youngworth, K. No such thing as σ: Flowdown and measurement of surface roughness requirements. Proc. SPIE Int. Soc. Opt. Eng. 2006, 6291, 21. [Google Scholar]
- Krywonos, A.; Harvey, J.E.; Choi, N. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles. J. Opt. Soc. Am. A 2011, 28, 1121–1138. [Google Scholar] [CrossRef]
- Rabiner, L.R.; Schafer, R.W.; Rader, C.M. The Chirp z-Transform Algorithm and Its Application. Bell Syst. Tech. J. 2014, 48, 1249–1292. [Google Scholar] [CrossRef]
- Rabiner, L.; Schafer, R.; Rader, C. The Chirp z-Transform Algorithm; IEEE: New York, NY, USA, 1969. [Google Scholar] [CrossRef]
- Tovar, A.A. Propagation of flat-topped multi-Gaussian laser beams. J. Opt. Soc. Am. A 2001, 18, 1897–1904. [Google Scholar] [CrossRef]
Entrance Pupil | Wavelength | Size of Source | First Mirror Coherence Length | Second Mirror Coherence Length |
---|---|---|---|---|
18.75 mm | 0.63 μm | 5 mm | 100 μm | 200 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Liu, Y.-A.; Ji, H.; Wang, H.; Tan, H.; Mo, Y.; Ma, D. Paraxial Propagation of Scattered Light Based on the Chirp Z-Transform. Sensors 2025, 25, 1454. https://doi.org/10.3390/s25051454
Zhao L, Liu Y-A, Ji H, Wang H, Tan H, Mo Y, Ma D. Paraxial Propagation of Scattered Light Based on the Chirp Z-Transform. Sensors. 2025; 25(5):1454. https://doi.org/10.3390/s25051454
Chicago/Turabian StyleZhao, Lujia, Yu-Ang Liu, Huiru Ji, Haibo Wang, Hao Tan, Yan Mo, and Donglin Ma. 2025. "Paraxial Propagation of Scattered Light Based on the Chirp Z-Transform" Sensors 25, no. 5: 1454. https://doi.org/10.3390/s25051454
APA StyleZhao, L., Liu, Y.-A., Ji, H., Wang, H., Tan, H., Mo, Y., & Ma, D. (2025). Paraxial Propagation of Scattered Light Based on the Chirp Z-Transform. Sensors, 25(5), 1454. https://doi.org/10.3390/s25051454