Performance of Ground-Based Solar-Induced Chlorophyll Fluorescence Retrieval Algorithms at the Water Vapor Absorption Band
"> Figure 1
<p>Irradiance with SRs of 0.1 nm and 0.3 nm (with spectral sampling intervals of 0.05 nm and 0.15 nm, respectively), simulated chlorophyll fluorescence (Fs), and reflectance spectra. (The dashed box indicates the range of each absorption band).</p> "> Figure 2
<p>ChinaSpec Daman Oasis Farmland Station (Observation height: 25 m; underlying surface: maize fields). (<b>a</b>) Aerial view of the DM Observation Station; (<b>b</b>) Observation equipment on the tower.</p> "> Figure 3
<p>Comparison of retrieved SIF values across the seven algorithms at varying SRs, with the water vapor concentration held at a midlevel value of 3.0 g/cm<sup>2</sup> and no added noise. The color gradient reflects different resolution levels, while “discontinuity” symbols denote omitted intermediate values because of excessively high numerical errors.</p> "> Figure 4
<p>RRMSE values of SIF retrieved by the seven algorithms in the 719 nm water vapor band under different SNR conditions. The SRs used to generate these data are 0.3 nm (<b>a</b>), 0.5 nm (<b>b</b>), 1.0 nm (<b>c</b>), and 3.0 nm (<b>d</b>), with a constant water vapor column concentration of 3 g/cm<sup>2</sup>.</p> "> Figure 5
<p>Simulated downwelling irradiance in the water vapor band (716–730 nm) at varying water vapor column concentrations, with the SR set to 0.3 nm, excluding other atmospheric parameters.</p> "> Figure 6
<p>SIF retrieval across water vapor concentrations (1.0 g/cm<sup>2</sup> to 5.0 g/cm<sup>2</sup>) with an SR of 0.3 nm in the absence of Gaussian noise, with scatter point colors representing water vapor concentrations from low (1.0 g/cm<sup>2</sup>) to high (5.0 g/cm<sup>2</sup>) in increasing intensity (Where (<b>a</b>–<b>g</b>) represents the results of the seven different retrieval algorithms).</p> "> Figure 7
<p>RRMSE values of retrieved SIF from the seven algorithms under varying water vapor column concentrations, utilizing different SRs in the absence of Gaussian random noise.</p> "> Figure 8
<p>R<sup>2</sup> and RMSE calculations comparing SIF retrieved from the water vapor band using ground observation data from the DM station in 2021 with SIF obtained from 3FLD in the O<sub>2</sub>-A band. The color bar on the right of the density plot represents the range of density values, with scatter points colored from blue to yellow, indicating increasing density from low to high.</p> "> Figure 9
<p>Solar-induced chlorophyll fluorescence (SIF) was retrieved from the water vapor band using seven algorithms, based on observations from the DM station in China. (<b>a</b>) Results for 7 July 2021 (sunny), and (<b>b</b>) results for 11 July 2021 (cloudy). The SIF data are transformed through ratio calculations and compared with the normalized SIF obtained from the 3FLD algorithm in the O<sub>2</sub>-A band, using 30-min averaged SIF data.</p> "> Figure 10
<p>Comparison of the daily mean SIF variation derived using seven algorithms in the water vapor band from spectral data collected at the DM station in China during the entire maize phenological stage from June to September 2021, with the results of the 3FLD algorithm in the O<sub>2</sub>-A band. To facilitate differentiation, the results of the 3FLD algorithm in the O<sub>2</sub>-A band are color-coded in yellow. Similarly, using the 3FLD retrieval values in the O<sub>2</sub>-A band as reference values, the results show that, overall, the retrieval values of all algorithms in the water vapor band exhibit good consistency with the 3FLD retrieval values in the O<sub>2</sub>-A band throughout the entire phenological stage. Both show the overall trend of SIF values increasing first and then decreasing with the increase in DOY, reaching the highest point in late July. This indicates that, although different retrieval algorithms have different processing methods and assumptions, they show certain similarities in capturing the temporal dynamics of the crop growth cycle. At the same time, the consistency between the SIF retrieval results in the water vapor band and the O<sub>2</sub>-A band also suggests that this band plays a crucial role in capturing the dynamic changes in plant growth and photosynthesis, particularly during different phenological stages of crop growth.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulated Dataset
2.2. Field Measurements
2.3. Validation Method
2.4. SIF Retrieval Algorithms
3. Results
3.1. Assessing SIF Retrieval Accuracy with SCOPE and MODTRAN Simulations
3.1.1. Influence of SR and SNR on SIF Retrieval Accuracy
3.1.2. The SIF Retrieval Accuracy Under the Payload Configurations of the QE65 Pro and ASD FieldSpec 3 Spectrometers
3.1.3. Sensitivity of SIF Retrieval Algorithms to Water Vapor Concentration
3.1.4. Comparison and Analysis of Multi-Band SIF Retrieval Results
3.2. Assessing SIF Retrieval Accuracy with Field Measurements
3.2.1. Comparison with SIF Retrieved at the O2-A Band
3.2.2. Seasonal Patterns of SIF Retrieved by Different Algorithms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
sFLD | 3FLD | iFLD | pFLD | SFM | SVD | DOAS | ||
---|---|---|---|---|---|---|---|---|
RMSE (mW/m2/nm/sr) | 1.0 m | 0.558 | 0.023 | 0.129 | 0.027 | 0.001 | 0.022 | 0.149 |
30.0 m | 0.566 | 0.023 | 0.129 | 0.027 | 0.001 | 0.016 | 0.148 |
References
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 111177. [Google Scholar] [CrossRef] [PubMed]
- Zarco-Tejada, P.J.; Catalina, A.; González, M.R.; Martín, P. Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery. Remote Sens. Environ. 2013, 136, 247–258. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, L.Y.; Hou, M.Y.; Liu, L.T.; Li, C.D. Progress in remote sensing of vegetation chlorophyll fluorescence. J. Remote Sens. 2009, 13, 963–978. [Google Scholar]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Köhler, P.; Frankenberg, C.; Magney, T.S.; Guanter, L.; Joiner, J.; Landgraf, J. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and intersensor comparison to OCO-2. Geophys. Res. Lett. 2018, 45, 10–456. [Google Scholar] [CrossRef]
- Sun, Y.; Frankenberg, C.; Jung, M.; Joiner, J.; Guanter, L.; Köhler, P.; Magney, T. Overview of solar-induced chlorophyll fluorescence (SIF) from the orbiting carbon observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sens. Environ. 2018, 209, 808–823. [Google Scholar] [CrossRef]
- Marrs, J.K.; Jones, T.S.; Allen, D.W.; Hutyra, L.R. Instrumentation sensitivities for tower-based solar-induced fluorescence measurements. Remote Sens. Environ. 2021, 259, 112413. [Google Scholar] [CrossRef]
- Grossmann, K.; Frankenberg, C.; Magney, T.S.; Hurlock, S.C.; Seibt, U.; Stutz, J. PhotoSpec: A new instrument to measure spatially distributed red and far-red solar-induced chlorophyll fluorescence. Remote Sens. Environ. 2018, 216, 311–327. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Porcar-Castell, A.; Chen, J.M.; Ju, W.; Wu, L.; Wu, Y.; Zhang, Y. Sun-induced chlorophyll fluorescence is more strongly related to photosynthesis with hemispherical than nadir measurements: Evidence from field observations and model simulations. Remote Sens. Environ. 2022, 279, 113118. [Google Scholar] [CrossRef]
- Loayza, H.; Moya, I.; Quiroz, R.; Ounis, A.; Goulas, Y. Active and passive chlorophyll fluorescence measurements at canopy level on potato crops. Evidence of similitude of diurnal cycles of apparent fluorescence yields. Photosynth. Res. 2023, 155, 271–288. [Google Scholar] [CrossRef]
- Boesche, E.; Stammes, P.; Ruhtz, T.; Preusker, R.; Fischer, J. Effect of aerosol microphysical properties on polarization of skylight: Sensitivity study and measurements. Appl. Opt. 2006, 45, 8790–8805. [Google Scholar] [CrossRef] [PubMed]
- Boesche, E.; Stammes, P.; Preusker, R.; Bennartz, R.; Knap, W.; Fischer, J. Polarization of skylight in the O2A band: Effects of aerosol properties. Appl. Opt. 2008, 47, 3467–3480. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Guanter, L.; Frankenberg, C.; Köhler, P.; Gu, L.; Magney, T.S.; Grossmann, K.; Sun, Y. Systematic assessment of retrieval methods for canopy far-red solar-induced chlorophyll fluorescence using high-frequency automated field spectroscopy. JGR Biogeosci. 2020, 125, e2019JG005533. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; Van der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L. Assessing band sensitivity to atmospheric radiation transfer for space-based retrieval of solar-induced chlorophyll fluorescence. Remote Sens. 2014, 6, 10656–10675. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Wang, J.; Zhao, C. Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on the Fraunhofer line principle. IEEE Geosci. Remote Sens. 2005, 43, 827–832. [Google Scholar]
- Li, S.; Gao, M.; Gao, Y.; Duan, S.; Han, X.; Li, Z.L. Sun-induced chlorophyll fluorescence retrieval from Chinese TanSat in southeast China. In Proceedings of the Name of the PhotonIcs & Electromagnetics Research Symposium-Spring, Rome, Italy, 17–20 June 2019. [Google Scholar]
- Liu, L.; Liu, X.; Hu, J. Effects of spectral resolution and SNR on the vegetation solar-induced fluorescence retrieval using FLD-based methods at canopy level. Eur. J. Remote Sens. 2015, 48, 743–762. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.; Verhoef, W.; Gu, X.; Liu, L.; Yang, G. A method to reconstruct the solar-induced canopy fluorescence spectrum from hyperspectral measurements. Remote Sens. 2014, 6, 10171–10192. [Google Scholar] [CrossRef]
- Guanter, L.; Alonso, L.; Gómez-Chova, L.; Meroni, M.; Preusker, R.; Fischer, J.; Moreno, J. Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Du, S.; Liu, X.; Chen, J.; Duan, W.; Liu, L. Addressing validation challenges for TROPOMI solar-induced chlorophyll fluorescence products using tower-based measurements and an NIRv-scaled approach. Remote Sens. Environ. 2023, 290, 113547. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Liu, L.; Lu, X.; Chen, J.; Du, S.; Zou, C. Modelling the influence of incident radiation on the SIF-based GPP estimation for maize. Agric. For. Meteorol. 2021, 307, 108522. [Google Scholar] [CrossRef]
- Plascyk, J.A.; Gabriel, F.C. The Fraunhofer line discriminator MKII-an airborne instrument for precise and standardized ecological luminescence measurement. IEEE Trans. Instrum. Meas. 1975, 24, 306–313. [Google Scholar] [CrossRef]
- Maier, S.W.; Günther, K.P.; Stellmes, M. Sun-induced fluorescence: A new tool for precision farming. Digit. Imaging Spectr. Tech. Appl. Precis. Agric. Crop Physiol. 2004, 66, 207–222. [Google Scholar]
- Alonso, L.; Gomez-Chova, L.; Vila-Frances, J.; Amoros-Lopez, J.; Guanter, L.; Calpe, J.; Moreno, J. Improved fraunhofer line discrimination method for vegetation fluorescence quantification. IEEE Geosci. Remote Sens. Lett. 2008, 5, 620–624. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L. Improving chlorophyll fluorescence retrieval using reflectance reconstruction based on principal components analysis. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1645–1649. [Google Scholar]
- Meroni, M.; Colombo, R. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer. Remote Sens. Environ. 2006, 103, 438–448. [Google Scholar] [CrossRef]
- Guanter, L.; Rossini, M.; Colombo, R.; Meroni, M.; Frankenberg, C.; Lee, J.E.; Joiner, J. Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space. Remote Sens. Environ. 2013, 133, 52–61. [Google Scholar] [CrossRef]
- Khosravi, N. Terrestrial Plant Fluorescence as Seen from Satellite. Master’s Thesis, Institut für UmweltPhysik (IUP) University of Bremen, Bremen, Germany, 2012. [Google Scholar]
- Pei, L.; Zhang, Y.; Zhang, Z.; Wu, Y.; Hou, Y.; Wu, L. Evaluating the Capability of Low-Configuration Spectrometers to Retrieve Far-Red Solar-Induced Chlorophyll Fluorescence and Its Application for Identifying Crop Growth Stages. J. Remote Sens. 2024, 4, 369. [Google Scholar] [CrossRef]
- Jiménez, M.; Moncholi, A.; Salido, E.; De Miguel, E. Testing the measurability of sun induced fluorescence under optimal and non-optimal sky conditions. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3505–3508. [Google Scholar]
- Guanter, L.; Bacour, C.; Schneider, A.; Aben, I.; van Kempen, T.A.; Maignan, F.; Retscher, C.; Köhler, P.; Frankenberg, C.; Joiner, J.; et al. The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst. Sci. Data 2021, 13, 5423–5440. [Google Scholar] [CrossRef]
- Cogliati, S.; Verhoef, W.; Kraft, S.; Sabater, N.; Alonso, L.; Vicent, J.; Moreno, J.; Drusch, M.; Colombo, R. Retrieval of sun-induced fluorescence using advanced spectral fitting methods. Remote Sens. Environ. 2015, 169, 344–357. [Google Scholar] [CrossRef]
- Zhang, Y.; Peñuelas, J. Combining solar-induced chlorophyll fluorescence and optical vegetation indices to better understand plant phenological responses to global change. J. Remote Sens. 2023, 3, 85. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y.; Garrity, S.; Middleton, E.M.; Huemmrich, K.F.; et al. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sens. Environ. 2014, 152, 375–391. [Google Scholar] [CrossRef]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A.; et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011, 38, L1770. [Google Scholar] [CrossRef]
Parameter of SCOPE | Value |
---|---|
Chlorophyll content (Cab) (μg/cm2) | 20, 40, 60 |
Dry matter content (Cdm) (g/cm2) | 2, 10, 20 |
Leaf water equivalent layer (Cw) (10−3 cm) | 5, 10, 20 |
Leaf cell structure index (N) | 1, 2 |
Leaf area index (LAI) | 1, 3, 5 |
Leaf inclination distribution function (LIDFa and LIDFb) | Spherical (a = −0.35, b = −0.15) |
SIF quantum yield efficiency (Fqe) | 0.01, 0.02 |
Parameter of MODTRAN | Value |
Atmospheric temperature profile | Midlatitude summer |
Aerosol model | Rural, VIS = 23 km |
Total column water vapor (g/cm2) | 1.0, 2.0, 3.0, 4.0, 5.0 |
View zenith angle (degree) | 0 |
Solar zenith angle (degree) | 30 |
Spectral resolutions (nm) | 0.3, 0.5, 1.0, 3.0 |
Algorithm | Equation | Reference |
---|---|---|
sFLD | [23] | |
3FLD | [24] | |
iFLD | [25] | |
pFLD | [26] | |
SFM | [27] | |
SVD | [28] | |
DOAS | [29] |
SRs | Retrieval Windows (nm) | ||||||
---|---|---|---|---|---|---|---|
sFLD | 3FLD | iFLD | pFLD | SFM | SVD | DOAS | |
0.3 nm | 718.5(left) | 718.6(left) 719.2(right) | 718.5(left) | 718.5(left) | [716.2, 721.6] | [713.8, 733.75] | [716.2, 721.0] |
0.5 nm | 718.5(left) | 718.25(left) 719.5(right) | 718.5(left) | 718.5(left) | [716.2, 721.6] | [713.8, 733.75] | [716.2, 721.0] |
1.0 nm | 718.5(left) | 718.5(left) 719.5(right) | 718.5(left) | 718.5(left) | [716.2, 734.0] | [716, 743.5] | [716.0, 743.5] |
3.0 nm | 718.0(left) | 718.0(left) 721.0(right) | 718.0(left) | 718.0(left) | [713.5, 734.5] | [659.6, 768.8] | [716.0, 743.5] |
Instrument | RRMSE (%) | ||||||
---|---|---|---|---|---|---|---|
sFLD | 3FLD | iFLD | pFLD | SFM | SVD | DOAS | |
QE Pro | 49.4 | 5.57 | 9.82 | 5.78 | 2.72 | 5.38 | 12.7 |
ASD | 1305.44 | 50.45 | 66.89 | 31.75 | 9.08 | 55.4 | 9.56 |
SR: 0.3 nm | sFLD | 3FLD | iFLD | pFLD | SFM | SVD | DOAS | |
R2 | O2-B | 0.898 | 0.991 | 0.999 | 0.995 | 0.999 | 0.995 | 0.965 |
H2O | 0.962 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.996 | |
O2-A | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | |
RRMSE (%) | O2-B | 24.004 | 4.498 | 5.957 | 7.488 | 0.909 | 3.346 | 31.109 |
H2O | 48.846 | 2.236 | 4.116 | 2.323 | 0.348 | 1.749 | 12.173 | |
O2-A | 1.568 | 0.444 | 0.486 | 0.550 | 0.685 | 0.662 | 12.028 | |
slope | O2-B | 0.836 | 1.012 | 1.067 | 1.095 | 1.002 | 0.999 | 0.863 |
H2O | 0.69 | 1.019 | 1.041 | 1.014 | 1.000 | 0.987 | 1.079 | |
O2-A | 0.99. | 1.002 | 1.000 | 1.005 | 1.006 | 0.997 | 0.922 | |
SR: 3.0 nm | sFLD | 3FLD | iFLD | pFLD | SFM | SVD | DOAS | |
R2 | O2-B | 0.082 | 0.048 | 0.825 | 0.905 | 0.85 | 0.079 | 0.958 |
H2O | 0.71 | 0.45 | 0.991 | 0.972 | 0.991 | 0.707 | 0.99 | |
O2-A | 0.962 | 0.999 | 0.999 | 0.999 | 0.998 | 0.999 | 0.998 | |
RRMSE (%) | O2-B | 706.571 | 143.280 | 18.864 | 13.248 | 35.214 | 132.349 | 18.349 |
H2O | 1305.935 | 49.322 | 66.363 | 17.14 | 8.466 | 55.387 | 9.116 | |
O2-A | 22.502 | 2.662 | 5.197 | 5.848 | 5.650 | 4.924 | 7.264 | |
slope | O2-B | 0.025 | 0.1 | 0.832 | 1.044 | 0.676 | 0.259 | 0.792 |
H2O | 0.062 | 0.818 | 2.147 | 1.021 | 1.1 | 0.633 | 0.95 | |
O2-A | 0.859 | 0.994 | 1.048 | 1.048 | 1.05 | 1.046 | 0.944 |
Sunny | sFLD | 3FLD | iFLD | pFLD | SFM | SVD | DOAS |
R2 | 0.77 | 0.42 | 0.26 | 0.41 | 0.77 | 0.75 | 0.49 |
RMSE (mW/m2/nm/sr) | 6.35 | 0.64 | 0.87 | 0.65 | 0.30 | 0.54 | 0.92 |
Clody | sFLD | 3FLD | iFLD | pFLD | SFM | SVD | DOAS |
R2 | 0.60 | 0.16 | 0.10 | 0.17 | 0.74 | 0.50 | 0.27 |
RMSE (mW/m2/nm/sr) | 4.96 | 0.73 | 0.91 | 0.73 | 0.26 | 0.76 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, X.; Du, S.; Qi, M.; Jing, X.; Liu, L. Performance of Ground-Based Solar-Induced Chlorophyll Fluorescence Retrieval Algorithms at the Water Vapor Absorption Band. Sensors 2025, 25, 689. https://doi.org/10.3390/s25030689
Zhang Y, Liu X, Du S, Qi M, Jing X, Liu L. Performance of Ground-Based Solar-Induced Chlorophyll Fluorescence Retrieval Algorithms at the Water Vapor Absorption Band. Sensors. 2025; 25(3):689. https://doi.org/10.3390/s25030689
Chicago/Turabian StyleZhang, Yongqi, Xinjie Liu, Shanshan Du, Mengjia Qi, Xia Jing, and Liangyun Liu. 2025. "Performance of Ground-Based Solar-Induced Chlorophyll Fluorescence Retrieval Algorithms at the Water Vapor Absorption Band" Sensors 25, no. 3: 689. https://doi.org/10.3390/s25030689
APA StyleZhang, Y., Liu, X., Du, S., Qi, M., Jing, X., & Liu, L. (2025). Performance of Ground-Based Solar-Induced Chlorophyll Fluorescence Retrieval Algorithms at the Water Vapor Absorption Band. Sensors, 25(3), 689. https://doi.org/10.3390/s25030689