A Novel Ultra-High Voltage Direct Current Line Fault Diagnosis Method Based on Principal Component Analysis and Kernel Density Estimation
<p>Explained and cumulative variance of principal components.</p> "> Figure 2
<p>Principal components comparison across different fault resistances and distances.</p> "> Figure 3
<p>Flowchat for joint probability density function estimation based on PCA and KDE.</p> "> Figure 4
<p>Flowchart for multi-fault type diagnosis of UHVDC transmission lines based on PCA and KDE.</p> "> Figure 5
<p>Fault diagnosis integration unit.</p> "> Figure 6
<p>Topology of UHVDC transmission system.</p> ">
Abstract
:1. Introduction
2. Multidimensional Fault Feature Extraction Utilizing PCA
2.1. Information Completeness and Fault Diagnosis
- I represents the effective information content contributed by the input signals X to the fault diagnosis process.
- denotes the inherent uncertainty associated with the fault state in the absence of any input information.
- represents the residual uncertainty of the fault state after incorporating the input information X.
- and represent the positive pole voltage and negative pole voltage, respectively.
- and represent the zero-mode and line-mode components, respectively.
2.2. PCA
2.3. PCA-Based Fault Characteristics
3. Protection Scheme Based on KDE Joint Probability Density Distribution
3.1. KDE
3.2. Joint Probability Density Distribution of Fault Features Based on KDE
3.3. Fault Diagnosis Based on Joint Probability Density Distribution
3.3.1. Start-Up Module
3.3.2. Fault Diagnosis Unit
3.3.3. Multi-Type Fault Diagnosis
4. Simulation Validation
4.1. UHVDC Simulation Model and Fault Sample Generation
4.2. Internal and External Fault Diagnosis
4.3. Impact of Fault Distance and Transition Resistance
4.4. Impact of Time Window
4.5. Impact of Sampling Frequency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DC | Direct current |
PCA | Principal Component Analysis |
KDE | Kernel Density Estimation |
UHVDC | Directory of open-access journals |
References
- Hu, J.; Xu, G.; Qi, L.; Qie, X. Research on UHV Engineering Knowledge Graph Construction Technology Based on New Energy Transmission Characteristics from Desert Areas. Power Syst. Clean Energy 2023, 39, 1–8. [Google Scholar]
- Luo, S.; Dong, X.; Shi, S.; Wang, B. A Directional Protection Scheme for HVDC Transmission Lines Based on Reactive Energy. IEEE Trans. Power Deliv. 2016, 31, 559–567. [Google Scholar] [CrossRef]
- He, Z.-Y.; Liao, K.; Li, X.-P.; Lin, S.; Yang, J.-W.; Mai, R.-K. Natural Frequency-Based Line Fault Location in HVDC Lines. IEEE Trans. Power Deliv. 2014, 29, 851–859. [Google Scholar] [CrossRef]
- Tang, L.; Dong, X.; Luo, S.; Shi, S.; Wang, B. A New Differential Protection of Transmission Line Based on Equivalent Travelling Wave. IEEE Trans. Power Deliv. 2017, 32, 1359–1369. [Google Scholar] [CrossRef]
- Aguilera, C.; Orduna, E.; Ratta, G. Adaptive Noncommunication Protection Based on Traveling Waves and Impedance Relay. IEEE Trans. Power Deliv. 2006, 21, 1154–1162. [Google Scholar] [CrossRef]
- Wu, J.; Li, H.; Wang, G.; Liang, Y. An Improved Traveling-Wave Protection Scheme for LCC-HVDC Transmission Lines. IEEE Trans. Power Deliv. 2017, 32, 106–116. [Google Scholar] [CrossRef]
- Zhang, C.; Song, G.; Dong, X. A Novel Traveling Wave Protection Method for DC Transmission Lines Using Current Fitting. IEEE Trans. Power Deliv. 2020, 35, 2980–2991. [Google Scholar] [CrossRef]
- Suonan, J.; Zhang, J.; Jiao, Z.; Yang, L.; Song, G. Distance Protection for HVDC Transmission Lines Considering Frequency-Dependent Parameters. IEEE Trans. Power Deliv. 2013, 28, 723–732. [Google Scholar] [CrossRef]
- Liang, R.; Wang, Z.; Peng, N.; Zare, F.; Liu, X.; Liu, C. Traveling Wave Protection Based on Asynchronously Sampled Time Difference of Arrival of Modulus Traveling Waves in Per Unit Line Length. Electr. Power Syst. Res. 2018, 165, 250–258. [Google Scholar] [CrossRef]
- Zhang, C.; Song, G.; Dong, X. Non-Unit Ultra-High-Speed DC Line Protection Method for HVDC Grids Using First Peak Time of Voltage. IEEE Trans. Power Deliv. 2021, 36, 1683–1693. [Google Scholar] [CrossRef]
- Mu, D.; Lin, S.; He, P.; Li, X. An Improved Method of Traveling Wave Protection for DC Lines Based on the Compensation of Line-Mode Fault Voltage. IEEE Trans. Power Deliv. 2023, 38, 1720–1730. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef]
- Liu, X.; Osman, A.H.; Malik, O.P. Hybrid Traveling Wave/Boundary Protection for Monopolar HVDC Line. IEEE Trans. Power Deliv. 2009, 24, 569–578. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, N.; Zhang, C.; Pan, X.; Wang, J. A Pilot Protection for HVDC Transmission Lines Based on Transient Energy Ratio of DC Filter Link. IEEE Trans. Power Deliv. 2019, 35, 1695–1706. [Google Scholar] [CrossRef]
- Qahtan, A.; Wang, S.; Zhang, X. KDE-Track: An Efficient Dynamic Density Estimator for Data Streams. IEEE Trans. Knowl. Data Eng. 2016, 29, 642–655. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, H.; Luo, S. Non-Unit Protection for Long-Distance LCC-HVDC Transmission Lines Based on Waveform Characteristics of Voltage Travelling Waves. Int. J. Electr. Power Energy Syst. 2023, 150, 109079. [Google Scholar] [CrossRef]
- Xie, Z.; Yan, J. Kernel Density Estimation of Traffic Accidents in a Network Space. Comput. Environ. Urban Syst. 2008, 32, 396–406. [Google Scholar] [CrossRef]
Fault Sequence Number | Fault Type |
---|---|
(1, 0, 0) | Positive pole ground fault |
(0, 1, 0) | Negative pole ground fault |
(0, 0, 1) | Bipole ground fault |
(0, 0, 0) | Non-line internal fault |
Parameters | Value |
---|---|
Fault type | F1, F2, F3 |
Fault resistance () | 0.1, 10, 50, 100, 200, 300 |
Fault location (kM) | 10, 20, 30, ..., 1080 |
Parameters | Value |
---|---|
Fault type | F4, F5, F6, F7, F8, F9, F10, F11 |
Fault resistance () | 0.1, 10, 50, 100, 200, 300 |
Fault Type | JPDF1 | JPDF2 | JPDF3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | 1 | Min | Max | 2 | Min | Max | 3 | |
PG | 0.0000 | N/A | 0.0000 | N/A | |||||
NG | 0.0000 | N/A | 0.0000 | N/A | |||||
BG | 0.0000 | N/A | 0.0000 | N/A | 9.5603 | ||||
EF | 0.0000 | N/A | 0.0000 | N/A | 0.0000 | N/A |
Fault Type | Acc of JPDF1 (%) | Acc of JPDF2 (%) | Acc of JPDF3 (%) | Acc of MTFDM (%) |
---|---|---|---|---|
PG | 100% | 100% | 100% | 100% |
NG | 100% | 100% | 99.85% | 100% |
BG | 100% | 100% | 100% | 100% |
EF | 100% | 100% | 100% | 100% |
No. | Actual Fault Type | Fault Resistance () | Fault Distance | JPDF1 | JPDF2 | JPDF3 | Threshold | Diagnosed Fault Type |
---|---|---|---|---|---|---|---|---|
1 | F1 | 400 | 10 | 3.4824 | 0.0000 | F1 | ||
2 | F1 | 400 | 500 | 3.5787 | F1 | |||
3 | F1 | 400 | 1000 | F1 | ||||
4 | F1 | 500 | 10 | 3.4824 | 0.0000 | F1 | ||
5 | F1 | 500 | 500 | 3.4839 | F1 | |||
6 | F1 | 500 | 1000 | F1 | ||||
7 | F2 | 400 | 10 | 0.0000 | 3.4824 | F2 | ||
8 | F2 | 400 | 500 | 3.6080 | F2 | |||
9 | F2 | 400 | 1000 | F2 | ||||
10 | F2 | 500 | 10 | 0.0000 | 3.4824 | F2 | ||
11 | F2 | 500 | 500 | 3.4841 | F2 | |||
12 | F2 | 500 | 1000 | F2 | ||||
13 | F3 | 400 | 10 | F3 | ||||
14 | F3 | 400 | 500 | F3 | ||||
15 | F3 | 400 | 1000 | F3 | ||||
16 | F3 | 500 | 10 | F3 | ||||
17 | F3 | 500 | 500 | 8.5017 | F3 | |||
18 | F3 | 500 | 1000 | F3 |
Fault Type | Acc of JPDF1 (%) | Acc of JPDF2 (%) | Acc of JPDF3 (%) | Acc of MTFDM (%) |
---|---|---|---|---|
PG | 100% | 100% | 100% | 100% |
NG | 100% | 100% | 100% | 100% |
BG | 100% | 100% | 100% | 100% |
EF | 100% | 100% | 100% | 100% |
Fault Type | Acc of JPDF1 (%) | Acc of JPDF2 (%) | Acc of JPDF3 (%) | Acc of MTFDM (%) |
---|---|---|---|---|
PG | 100% | 100% | 98.61% | 100% |
NG | 100% | 100% | 100% | 100% |
BG | 99.85% | 100% | 100% | 100% |
EF | 100% | 100% | 100% | 100% |
Fault Type | Acc of JPDF1 (%) | Acc of JPDF2 (%) | Acc of JPDF3 (%) | Acc of MTFDM (%) |
---|---|---|---|---|
PG | 100% | 100% | 100% | 100% |
NG | 100% | 100% | 99.69% | 99.85% |
BG | 100% | 100% | 100% | 100% |
EF | 100% | 100% | 100% | 100% |
Fault Type | Acc of JPDF1 (%) | Acc of JPDF2 (%) | Acc of JPDF3 (%) | Acc of MTFDM (%) |
---|---|---|---|---|
PG | 100% | 100% | 100% | 100% |
NG | 100% | 100% | 100% | 100% |
BG | 100% | 100% | 100% | 100% |
EF | 100% | 100% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Gong, Q. A Novel Ultra-High Voltage Direct Current Line Fault Diagnosis Method Based on Principal Component Analysis and Kernel Density Estimation. Sensors 2025, 25, 642. https://doi.org/10.3390/s25030642
Zhang H, Gong Q. A Novel Ultra-High Voltage Direct Current Line Fault Diagnosis Method Based on Principal Component Analysis and Kernel Density Estimation. Sensors. 2025; 25(3):642. https://doi.org/10.3390/s25030642
Chicago/Turabian StyleZhang, Haojie, and Qingwu Gong. 2025. "A Novel Ultra-High Voltage Direct Current Line Fault Diagnosis Method Based on Principal Component Analysis and Kernel Density Estimation" Sensors 25, no. 3: 642. https://doi.org/10.3390/s25030642
APA StyleZhang, H., & Gong, Q. (2025). A Novel Ultra-High Voltage Direct Current Line Fault Diagnosis Method Based on Principal Component Analysis and Kernel Density Estimation. Sensors, 25(3), 642. https://doi.org/10.3390/s25030642