Sensing in Inland Waters to Promote Safe Navigation: A Case Study in the Aveiro’s Lagoon
<p>Meteoceanographic data sharing system research concept.</p> "> Figure 2
<p>Outdoor color palette validation: (<b>a</b>) direct sunlight exposure on the screen during testing; (<b>b</b>) the set of colors chosen for evaluation.</p> "> Figure 3
<p>UI with multicolored buttons evaluated in an outdoor context.</p> "> Figure 4
<p>The system shares real-time data, such as water depth, wind speed and direction, course, and speed over ground (SOG) with the community.</p> "> Figure 5
<p>Meteo-oceanographic data-sharing system UI buttons. The orange button on the bottom represents the emergency button to report accidents and other complementary information to the maritime environment.</p> "> Figure 6
<p>Meteo-oceanographic data sharing system UI with two sections: data connected to the NMEA boat’s network and the information shared by users in the local area.</p> "> Figure 7
<p>Tidal height from a specific point in the Ria de Aveiro.</p> "> Figure 8
<p>The NMEA network simulator: (<b>a</b>) It is possible to observe the depth sounder support by a wooden board, the B&G plotter inside the storage shelves, and, on the right side, the wind sensor. (<b>b</b>) The water tank contains three 30 g weights at each end of the K-line and four cables to raise and lower it, simulating the height of the tide.</p> "> Figure 9
<p>The simulator montage: (<b>a</b>) the storage shelf prepared to position the plotter on the highest available surface; (<b>b</b>) the outside plotter and wind sensor installation.</p> "> Figure 10
<p>The final architecture proposed for the maritime data-sharing system.</p> "> Figure 11
<p>Participants’ age range.</p> "> Figure 12
<p>Participants’ boat credentials.</p> "> Figure 13
<p>Most used maritime electronic instruments installed on participants’ boats.</p> "> Figure 14
<p>Different opinions about access and sharing meteoceanographic data within an online community.</p> "> Figure 15
<p>Coastal navigation data that should be shared.</p> "> Figure 16
<p>Inland water navigation data that should be shared.</p> "> Figure 17
<p>The most predominant palette choices by participants.</p> ">
Abstract
:1. Introduction
2. Advancements in Maritime Technologies: Enhancing Navigational Safety and Communication
3. Low-Cost Maritime Data-Sharing System Design and Evaluation
3.1. Techniques for Supporting Maritime Information Sharing and Visualization: A Benchmarking Analysis
- Solutions facilitating real-time data sharing and visualization with other users;
- Solutions representing meteoceanographic conditions and navigational information along maritime routes.
3.2. System’s User Interface (UI)
3.3. Maritime Real-Time Data-Sharing: The NMEA Network Simulator and System’s Architecture
4. Survey and in-Context Interviews
4.1. End-User Validation of the Meteo-Oceanographic Data-Sharing Concept: Survey and Interview Results
- The interviews allowed the sailors to identify relevant data to be shared within the system, and facilitated an open a debate, resulting in a set of UI designs that could be integrated into the maritime data sharing system;
- The questionnaires aimed to identify participants’ characteristics (e.g., navigator’s license, sailing frequency, onboard electronics) and opinions about the functional requirements of the maritime data-sharing system.
4.2. Outdoor Color and UI Interaction Validation
5. Discussion
6. Conclusions
Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- IALA: IALA Navguide 2018 Digital—IALA AISM. Available online: https://tinyurl.com/2eejtvz3 (accessed on 18 October 2021).
- Organization Maritime Internationale (OMI): E-navigation. Available online: https://www.imo.org/fr/OurWork/Safety/Pages/eNavigation.aspx (accessed on 12 October 2021).
- Australia Government: Marine Navigation. Available online: https://www.amsa.gov.au/safety-navigation/navigating-coastal-waters/marine-navigation (accessed on 11 December 2022).
- National Geographic Society: Navigation. Available online: https://education.nationalgeographic.org/resource/navigation (accessed on 11 December 2022).
- Anderson, E.W.; Howard, J.L.; Jones, S.M.; Edward, W.; Logsdon, T.S.; Richey, M.W. Navigation|Technology|Britannica. Available online: https://www.britannica.com/technology/navigation-technology (accessed on 11 December 2021).
- Tu, E.; Zhang, G.; Rachmawati, L.; Rajabally, E.; Huang, G.-B. Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey From Data to Methodology. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1559–1582. [Google Scholar] [CrossRef]
- Riveiro, M.; Pallotta, G.; Vespe, M. Maritime anomaly detection: A review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1266. [Google Scholar] [CrossRef]
- Soares, A.; Dividino, R.; Abreu, F.; Brousseau, M.; Isenor, A.W.; Webb, S.; Matwin, S. CRISIS: Integrating AIS and Ocean Data Streams Using Semantic Web Standards for Event Detection. In Proceedings of the 2019 International Conference on Military Communications and Information Systems (ICMCIS), Budva, Montenegro, 14–15 May 2019; pp. 1–7. [Google Scholar] [CrossRef]
- PredictWind: DataHub · PredictWind. Available online: https://www.predictwind.com/datahub (accessed on 19 June 2024).
- Wei, T.; Feng, W.; Chen, Y.; Wang, C.-X.; Ge, N.; Lu, J. Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges. IEEE Internet Things J. 2021, 8, 8910–8934. [Google Scholar] [CrossRef]
- Pavić, I.; Kasum, J.; Mišković, J.; Alujević, D. Analysis of Crowdsourced Bathymetry Concept and It’s Potential Implications on Safety of Navigation. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2020, 14, 681–686. [Google Scholar]
- Picado, A.; Abreu, J.; Carvalho, D.M.; Santos, H.; Leitão, P.; Rodrigues, J.; Chambel Leitão, J.; Dias, J.M. Optimization of safe navigability conditions in shallow inland waters: The Routinav app. Ocean Eng. 2022, 259, 111946. [Google Scholar] [CrossRef]
- Willemsen, D. Tides & Navigation Course—Tidal Prediction Charts, Tables, Vertical Rise Sea. Available online: https://sailingissues.com/navcourse7.html (accessed on 19 June 2024).
- Dias, J.M.; Pereira, F.; Picado, A.; Lopes, C.L.; Pinheiro, J.P.; Lopes, S.M.; Pinho, P.G. A Comprehensive Estuarine Hydrodynamics-Salinity Study: Impact of Morphologic Changes on Ria de Aveiro (Atlantic Coast of Portugal). J. Mar. Sci. Eng. 2021, 9, 234. [Google Scholar] [CrossRef]
- Kytariolou, A.; Themelis, N. Ship routing optimisation based on forecasted weather data considering safety criteria. J. Navig. 2022, 75, 1310–1331. [Google Scholar] [CrossRef]
- Melnyk, O.; Onyshchenko, S. Ensuring Safety of Navigation in the Aspect of Reducing Environmental Impact. In Advances in Computer Science for Engineering and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Dias, J.M.; Lopes, J.F.; Dekeyser, I. Hydrological characterisation of Ria de Aveiro, Portugal, in early summer. Oceanol. Acta. 1999, 22, 473–485. [Google Scholar] [CrossRef]
- Endean, K. Tidal calculations: Why online predictions can be dangerously inaccurate—Yachting Monthly. Available online: https://www.yachtingmonthly.com/sailing-skills/tidal-calculations-why-online-predictions-can-be-dangerously-inaccurate-90416?utm_source=facebook.com&utm_medium=social&utm_content=ym&utm_campaign=socialflow&fbclid=IwAR0ILMeqSgJT7KiI1Pffxa6dxPEB1Rjic3HjL5wxOEjRViZCmY9an04rWcY (accessed on 11 December 2022).
- Royal Yachting Association. Rya Day Skipper Practical Course Notes; Royal Yachting Association: Hamble, UK, 2005. [Google Scholar]
- Cook, M.J.; Noyes, J.M.; Masakowski, Y. Decision Making in Complex Environments; Ashgate Publishing, Ltd.: Farnham, UK, 2007. [Google Scholar]
- Danielsen, B.-E.; Lützhöft, M.; Haavik, T.K.; Johnsen, S.O.; Porathe, T. “Seafarers should be navigating by the stars”: Barriers to usability in ship bridge design. Cogn. Technol. Work. 2022, 24, 675–691. [Google Scholar] [CrossRef]
- Wahlström, M.; Hakulinen, J.; Karvonen, H.; Lindborg, I. Human Factors Challenges in Unmanned Ship Operations—Insights from Other Domains. Procedia Manuf. 2015, 3, 1038–1045. [Google Scholar] [CrossRef]
- Pokorny, J.; Ma, K.; Saafi, S.; Frolka, J.; Villa, J.; Gerasimenko, M.; Koucheryavy, Y.; Hosek, J. Prototype Design and Experimental Evaluation of Autonomous Collaborative Communication System for Emerging Maritime Use Cases. Sensors 2021, 21, 3871. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Wang, M.M.; Zhang, J.; Wang, L. Maritime Internet of Things: Challenges and Solutions. IEEE Wirel. Commun. 2020, 27, 188–196. [Google Scholar] [CrossRef]
- Sentec: Smooth Sailing: How Shipborne Meteorological Instruments Enhance Offshore Weather Monitoring. Available online: https://cdsentec.com/smooth-sailing-how-shipborne-meteorological-instruments-enhance-offshore-weather-monitoring/ (accessed on 2 July 2024).
- Dias, J.M.; Lopes, J.F.; Dekeyser, I. Tidal propagation in Ria de Aveiro lagoon, Portugal. Phys. Chem. Earth Part B: Hydrol. Ocean. Atmos. 2000, 25, 369–374. [Google Scholar] [CrossRef]
- Holtzblatt, K.; Beyer, H. Contextual Design: Defining Customer-Centered Systems; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Lensu, M.; Goerlandt, F. Big maritime data for the Baltic Sea with a focus on the winter navigation system. Mar. Policy. 2019, 104, 53–65. [Google Scholar] [CrossRef]
- Rosa, F.; Jousselme, A.-L. Towards a Coherent Assessment of Situational Awareness to Support System Design in the Maritime Context. In Advances in Artificial Intelligence, Software and Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Fruth, M.; Teuteberg, F. Digitization in maritime logistics—What is there and what is missing? Cogent Bus. Manag. 2017, 4, 1411066. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Networks. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Wortmann, F.; Flüchter, K. Internet of things. Bus. Inf. Syst. Eng. 2015, 57, 221–224. [Google Scholar] [CrossRef]
- Urbanski, J.; Morgas, W.; Specht, C. Perfecting the Maritime Navigation information services of the European Union. In Proceedings of the 2008 1st International Conference on Information Technology, Gdansk, Poland, 18–21 May 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Katranas, G.; Riel, A.; Corchado-Rodríguez, J.M.; Plaza-Hernández, M. The SMARTSEA Education Approach to Leveraging the Internet of Things in the Maritime Industry. In Systems, Software and Services Process Improvement (EuroSPI 2020); Yilmaz, M., Niemann, J., Clarke, P., Messnarz, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 247–258. [Google Scholar] [CrossRef]
- Di Luccio, D.; Riccio, A.; Galletti, A.; Laccetti, G.; Lapegna, M.; Marcellino, L.; Kosta, S.; Montella, R. Coastal marine data crowdsourcing using the Internet of Floating Things: Improving the results of a water quality model. IEEE Access 2020, 8, 101209–101223. [Google Scholar] [CrossRef]
- Giannopoulos, G.A. The application of information communication technologies in transport. Eur. J. Oper. Res. 2004, 152, 302–320. [Google Scholar] [CrossRef]
- Weintrit, A. The Electronic Chart Display and Information System (ECDIS): An Operational Handbook; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Calvert, E.S. Human Factors the Collision Problem. J. Navig. 1969, 22, 48–56. [Google Scholar] [CrossRef]
- Schager, B. When Technology Leads Us Astray: ABroadened View of Human Error. J. Navig. 2008, 61, 63–70. [Google Scholar] [CrossRef]
- Bielić, T.; Hasanspahić, N.; Čulin, J. Preventing marine accidents caused by technology-induced human error. Pomorstvo 2017, 31, 33–37. [Google Scholar]
- Praetorius, G.; van Westrenen, F.; Mitchell, D.L.; Hollnagel, E. Learning lessons in resilient traffic management: A cross-domain study of vessel traffic service and air traffic control. In Proceedings of the HFES Europe Chapter Conference Toulouse 2012, Toulouse, France, 10–12 October 2012; pp. 277–287. [Google Scholar]
- Wang, H.-B.; Li, X.-G.; Li, P.-F.; Veremey, E.I.; Sotnikova, M.V. Application of Real-Coded Genetic Algorithm in Ship Weather Routing. J. Navig. 2018, 71, 989–1010. [Google Scholar] [CrossRef]
- Munari, F. Search and Rescue at Sea: Do New Challenges Require New Rules? In Governance of Arctic Shipping; Springer: Cham, Switzerland, 2020; pp. 63–81. [Google Scholar]
- Argüelles, R.P.; García Maza, J.A.; Martín, F.M.; Bartolomé, M. Ship-to-ship dialogues and agreements for collision risk reduction. J. Navig. 2021, 74, 1039–1056. [Google Scholar] [CrossRef]
- Mabon, L. Making climate information services accessible to communities: What can we learn from environmental risk communication research? Urban Clim. 2020, 31, 100537. [Google Scholar] [CrossRef]
- Weintrit, A. Clarification, Systematization and General Classification of Electronic Chart Systems and Electronic Navigational Charts Used in Marine Navigation. Part 1—Electronic Chart Systems. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2018, 12, 471–482. [Google Scholar] [CrossRef]
- Potamos, G.; Peratikou, A.; Stavrou, S. Towards a Maritime Cyber Range training environment. In Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26–28 July 2021; pp. 180–185. [Google Scholar] [CrossRef]
- Graziano, M.D.; Renga, A.; Moccia, A. Integration of Automatic Identification System (AIS) Data and Single-Channel Synthetic Aperture Radar (SAR) Images by SAR-Based Ship Velocity Estimation for Maritime Situational Awareness. Remote Sens. 2019, 11, 2196. [Google Scholar] [CrossRef]
- Meyer, C.B. A Case in Case Study Methodology. Field Methods 2001, 13, 329–352. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research: Design and Methods; Sage: Greenville, SC, USA, 2009. [Google Scholar]
- Liu, X.; Shiotani, S. A virtual globe-based visualization interactive framework for a small craft navigation assistance system in the near sea. J. Traffic Transp. Eng. (Engl. Ed.) 2017, 4, 564–575. [Google Scholar] [CrossRef]
- Andersen, B.; Camp, R.C. Current position and future development of benchmarking. TQM Mag. 1995, 7, 21–25. [Google Scholar] [CrossRef]
- Francis, G.; Holloway, J. What have we learned? Themes from the literature on best-practice benchmarking. Int. J. Manag. Rev. 2007, 9, 171–189. [Google Scholar] [CrossRef]
- Trosa, S.; Williams, S. Benchmarking in public sector performance management. Perform. Manag. Gov. 1996, 45. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=29d83f4013a8cc1cd0484fce47952fbbc24c8bfb#page=46 (accessed on 10 August 2024).
- Carvalho, D.M. Nautical Digital Platforms with Navigator-Generated Content: An Analysis of Human–Computer Interaction. In International Conference on Information Systems and Intelligent Applications; Al-Emran, M., Al-Sharafi, M.A., and Shaalan, K., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 203–213. [Google Scholar]
- Bojić, F.; Karin, I.; Juričević, I.; Čipčić, M. Design and application of an automated smart buoy in Increasing Navigation Safety and environmental standards in Ports. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2021, 15, 373–380. [Google Scholar] [CrossRef]
- Settin, A.; Salor Moral, N.; Barro, E. Preliminary assessment of Route Optimisation for FUel Minimisation and safety of navigation (PROFUMO). In Proceedings of the 14th International Conference on Space Operations, Daejeon, Korea, 16–20 May 2016; p. 2630. [Google Scholar]
- Chang, J.S.; Huang, C.H.; Chang, S.M. AIS-assisted service provision crowdsourcing of marine meteorological information. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 63–67. [Google Scholar] [CrossRef]
- SIMRAD: GO7 XSR|Simrad. Available online: https://www.simrad-yachting.com/en-sg/simrad/type/fishfinders-chartplotters/go7-xsr-row-no-transducer/ (accessed on 4 June 2022).
- Mitchell, S. NMEA 2000 Powered Raspberry Pi. Available online: https://seabits.com/nmea-2000-powered-raspberry-pi/ (accessed on 29 May 2022).
- Mgrouch: Bareboat Necessities OS Documentation. Available online: https://bareboat-necessities.github.io/my-bareboat/bareboat-os.html#_why_use_bbn_os (accessed on 3 June 2022).
- SirReal: Raspberry on a Boat #1: Wegmatt dAISy Assembly and Software Overview—YouTube. Available online: https://www.youtube.com/watch?v=jFVOjGc34f4&list=PLgYS2FpH2f4rLgdJ05F4KAOMvAgsLH1da&index=1&ab_channel=SirReal (accessed on 4 June 2022).
- Le Diouris, O. Enriching an NMEA Stream. Available online: https://www.lediouris.net/RaspberryPI/_Articles/readme.html (accessed on 29 May 2022).
- SEA AI: SEA.AI: Machine Vision for Safety at Sea. Available online: https://sea.ai/#products (accessed on 22 November 2022).
- Navionics|Mobile App for Boating and Fishing. Available online: https://www.navionics.com/fin/apps/navionics-boating (accessed on 1 November 2021).
- Savvy Navvy: Aplicação de Navegação de Barco: Mapas, GPS e Cartas Náuticas|Savvy Navvy. Available online: https://pt.savvy-navvy.com/ (accessed on 13 March 2024).
- Ocean Wave Ventures: SmartBoat—Apps on Google Play. Available online: https://play.google.com/store/apps/details?id=com.smartboatnetwork.smartboat&hl=en&gl=US (accessed on 13 March 2024).
- Wartsila Voyage Sweden AB: Wärtsilä iSailor i App Store. Available online: https://apps.apple.com/se/app/wärtsilä-isailor/id398456162 (accessed on 3 June 2022).
- UAB SailRacer: Take Tactical Decisions and Track Your Regatta with SailRacer.Net Sailing App. Available online: https://www.sailracer.net/app/ (accessed on 3 June 2022).
- Temir, I. Saillogger: Effortlessly Log Your Sails. Available online: https://saillogger.com/accounts/login/?next=/ (accessed on 5 June 2022).
- Nebo: Nebo Global—Automated Voyage Logging for Boats. Available online: https://nebo.global/ (accessed on 15 November 2022).
- Bärlocher, M. OpenSeaMap–the Free Nautical Chart. Hydro Int. 2013, 29. [Google Scholar]
- UAB SailRacer: inkDisplay for Sailing—Enhanced Visibility SailRacer Display. Available online: https://www.sailracer.net/inkdisplay/ (accessed on 3 June 2022).
- Obrist, M.; Tscheligi, M.; De Ruyter, B.; Schmidt, A. Contextual user experience: How to reflect it in interaction designs? In Conference on Human Factors in Computing Systems—Proceedings; ACM Press: New York, NY, USA, 2010; pp. 3197–3200. [Google Scholar] [CrossRef]
- Norman, D. Design for a Better World: Meaningful, Sustainable, Humanity Centered; The MIT Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Carvalho, D. Visualização Aumentada da Navegabilidade na Ria de Aveiro. Available online: https://hdl.handle.net/10773/32553 (accessed on 22 July 2021).
- Tigwell, G.W.; Flatla, D.R.; Menzies, R. It’s Not Just the Light: Understanding the Factors Causing Situational Visual Impairments During Mobile Interaction. In Proceedings of the 10th Nordic Conference on Human-Computer Interaction—NordiCHI ’18, Oslo, Norway, 29 September–3 October 2018; ACM Press: New York, NY, USA, 2018. [Google Scholar]
- Apple: iPhone SE (2.a Geração)—Especificações Técnicas—Suporte Apple (PT). Available online: https://support.apple.com/pt-pt/111882 (accessed on 20 March 2024).
- UAB SailRacer: SailRacer—Tactical App for Sailors. Android, iOS, inkDisplay, Watch. Available online: https://www.sailracer.net/ (accessed on 3 June 2022).
- Waze: Instruções de Direção, Atualizações do Tráfego Em Tempo Real & Condições Das Estradas—Waze. Available online: https://www.waze.com/pt-PT/live-map/ (accessed on 12 March 2024).
- IMO. Guidelines for the Standardization of User Interface Design for Navigation Equipment; IMO: London, UK, 2019. [Google Scholar]
- Nielsen, J. Usability Inspection Methods. In Handbook of Human-Computer Interaction, 2nd ed.; North Holland: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Nielsen, J. 10 Heuristics for User Interface Design. Available online: https://www.nngroup.com/articles/ten-usability-heuristics/ (accessed on 21 December 2019).
- Karlsson, M.; Haraldson, S.; Lind, M.; Olsson, E.; Andersen, T.; Tichavska, M. Data Visualisation Tools for Enhanced Situational Awareness in Maritime Operations. In Maritime Informatics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 355–372. [Google Scholar]
- Langley, R. Nmea 0183: A gps receiver. GPS World 1995, 6, 54–57. [Google Scholar]
- National Marine Electronics Association: National Marine Electronics Association—NMEA. Available online: https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard (accessed on 29 May 2022).
- B&G: Vulcan 7|B&G EU. Available online: https://www.bandg.com/en-eu/bg/type/chartplotter/vulcan-7r-no-xd/ (accessed on 14 March 2024).
- B&G: WS310 Wind Pack with 20m Cable and Interface|B&G Sailing USA. Available online: https://www.bandg.com/bg/type/instrument-sensors-and-transducers/wind-sensors/ws310-wind-pack-with-20m-cable-and-interface/ (accessed on 14 March 2024).
- B&G: DST800 Depth, Speed, Temperature Sensor With Plastic Housing|B&G Sailing Electronics. Available online: https://www.bandg.com/en-gb/bg/type/instrument-sensors-and-transducers/depth-speed-transducers/dst800-dst-plastic-235khz/ (accessed on 14 March 2024).
- de Oliveira, S. Internet das Coisas com ESP8266, Arduino e Raspberry PI; Novatec Editora: São Paulo, Brazil, 2017. [Google Scholar]
- Jayaram, T.; Devi, D.D.; Jayaprabha, S. Fishermen Border Security Alert System Using IOT. Int. Res. J. Mod. Eng. Technol. Sci. 2021, 3. Available online: https://www.irjmets.com/uploadedfiles/paper/volume3/issue_4_april_2021/8345/1628083342.pdf (accessed on 14 August 2024).
- NodeMCU: NodeMCU Documentation. Available online: https://nodemcu.readthedocs.io/en/release/ (accessed on 18 March 2024).
- Watson, D. ESP8266—Serial Communication. Available online: https://www.theengineeringprojects.com/2021/09/esp8266-serial-communication.html (accessed on 18 March 2024).
- Cui, J.; Cui, L.; Huang, Z.; Li, X.; Han, F. IoT Wheelchair Control System Based on Multi-Mode Sensing and Human-Machine Interaction. Micromachines 2022, 13, 1108. [Google Scholar] [CrossRef]
- Vue.js—The Progressive JavaScript Framework|Vue.js. Available online: https://vuejs.org/ (accessed on 18 March 2024).
- Bernard, H.R. Research Methods in Anthropology: Qualitative and Quantitative Approaches; Rowman & Littlefield: Lanham, MD, USA, 2017. [Google Scholar]
- Blaxter, L.; Hughes, C.; Tight, M. How to Research; McGraw-Hill Education: London, UK, 2010. [Google Scholar]
- Etikan, I. Comparison of Convenience Sampling Purposive Sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Koilo, V. Unlocking the sustainable value with digitalization: Views of maritime stakeholders on business opportunities. Probl. Perspect. Manag. 2024, 22, 401–407. [Google Scholar] [CrossRef]
- Liu, C.; Chu, X.; Wu, W.; Li, S.; He, Z.; Zheng, M.; Zhou, H.; Li, Z. Human–machine cooperation research for navigation of maritime autonomous surface ships: A review and consideration. Ocean Eng. 2022, 246, 110555. [Google Scholar] [CrossRef]
- van Hillegersberg, J.; Vroling, M.; Smit, F. Improving Decision Making in Ocean Race Sailing using Sensor Data. In Proceedings of the 23rd Americas Conference on Information Systems, AMCIS 2017, Boston, MA, USA, 10–12 August 2017. [Google Scholar]
What Is Shared | Where This Data Is Visualized | Primary Reason for Sharing This Data |
---|---|---|
Wind speed | MFD, plotter, ECDIS or a small analogic display | Allows sailors to adjust their routes and navigation strategies to optimize vessel performance; Aids in preventing dangerous situations such as vessel drifting by anticipating weather and wind changes. |
Wind direction | MFD, plotter, ECDIS or a small analogic display | |
Water depth (observed depth) | MFD, plotter, or a small analogic display embedded in the boats | Crucial for determining route viability and avoiding shallow or no-go areas; Enables sailors to identify navigable channels to avoid grounding; Ensures safe navigation, especially in unfamiliar areas; Real-time depth data allow for immediate route adjustments, enhancing navigational safety. |
Tide Height | MFD, plotter, tide forecast services (e.g., websites and mobile apps) or tide tables | Tidal heights influence the extent of intertidal zones, which are crucial habitats for various marine species. By understanding tidal patterns, vessels can plan their routes to take advantage of favorable tidal currents, reducing travel time and fuel consumption. |
Non-meteo-oceanographic data | ||
Speed over ground (SOG) | MFD, plotter, ECDIS or analogical display | Allows for adjustments in voyage planning and enables real-time decision-making about speed adjustments to maintain safety. |
Heading | MFD, (using GPS and Compass), Plotter, ECDIS, AIS, or analog compass | Correcting the heading in real-time to deal with currents and winds that may drift the vessel off its intended course. |
Course | MFD (using GPS and compass), plotter, ECDIS or analog display | Confirming that the defined route is being followed accurately, facilitating efficiency and promoting safe navigation. |
Criteria | Boat Sensor Connectivity | Inland Water Data | Friendly UI Design | SVI-Friendly Interface | Community Data-Sharing | Free Software Access | Price in Euros |
---|---|---|---|---|---|---|---|
Data sharing and visualization system solutions | |||||||
Profumo [58] | ✓ | N/A | |||||
Chartplotter (e.g., Simrad GO7 XSR with Basemap) [60] | ✓ | ✓ | ✓ | ✓ | 872.32 EUR | ||
Dynamo [35] | ✓ | ✓ | ✓ | N/A | |||
Mitchell’s project [61] | ✓ | ✓ | 226.25 EUR | ||||
Bareboat Necessities (BBN) [62] | ✓ | ✓ | ✓ | 348.33 EUR | |||
Raspberry Pi on boat project [63] | ✓ | ✓ | 138.91 EUR | ||||
Le Diouris project [64] | ✓ | ✓ | 344.80 EUR | ||||
SEA.AI [65] | ✓ | ✓ | ✓ | ✓ | 9999.00 EUR | ||
Nautical applications to support navigation | |||||||
Navionics Boating App [66] | ✓ | 230.68 EUR | |||||
AIS-weather App [59] | ✓ | ✓ | N/A | ||||
Savvy Navy [67] | Free | ||||||
SmartBoat [68] | ✓ | N/A | |||||
Wärtsilä iSailor [69] | ✓ | Free | |||||
SailRacer [70] | ✓ | Free | |||||
Routinav [12] | ✓ | N/A | |||||
Saillogger [71] | ✓ | App is Free, but requires a specific hardware that costs 250 EUR–350 EUR | |||||
Nebo [72] | 183.66 EUR | ||||||
PredictWind: DataHub [9] | ✓ | ✓ | ✓ | ✓ | App requires a subscription to access to the main functionalities, and specific hardware that costs 279 EUR | ||
Maritime data sharing system developed by the authors | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 164.25 EUR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, D.M.; Dias, J.M.; de Abreu, J.F. Sensing in Inland Waters to Promote Safe Navigation: A Case Study in the Aveiro’s Lagoon. Sensors 2024, 24, 7677. https://doi.org/10.3390/s24237677
Carvalho DM, Dias JM, de Abreu JF. Sensing in Inland Waters to Promote Safe Navigation: A Case Study in the Aveiro’s Lagoon. Sensors. 2024; 24(23):7677. https://doi.org/10.3390/s24237677
Chicago/Turabian StyleCarvalho, Diogo Miguel, João Miguel Dias, and Jorge Ferraz de Abreu. 2024. "Sensing in Inland Waters to Promote Safe Navigation: A Case Study in the Aveiro’s Lagoon" Sensors 24, no. 23: 7677. https://doi.org/10.3390/s24237677
APA StyleCarvalho, D. M., Dias, J. M., & de Abreu, J. F. (2024). Sensing in Inland Waters to Promote Safe Navigation: A Case Study in the Aveiro’s Lagoon. Sensors, 24(23), 7677. https://doi.org/10.3390/s24237677