Recent Developments in Aptamer-Based Sensors for Diagnostics
<p>Schematic diagram of SELEX process showing the several stages taken by SELEX to produce aptamers. (1) Target incubation. (2) Dividing up. (3) Separation/elution. (4) PCR or RT-PCR amplification. (5) Cloning of chosen aptamer pool following the last SELEX phase [<a href="#B9-sensors-24-07432" class="html-bibr">9</a>].</p> "> Figure 2
<p>Aptasensors with electrochemical properties. Schematic illustration of the Fe(CN)<sub>6</sub><sup>4−/3−</sup> electrochemical aptasensor. (<b>a</b>) The structure of the aptamer included a hybridized form with complementary DNA that was fixed onto the gold surface. This aptamer was specifically designed to bind with the target, leading to a decrease in the number of aptamers present on the electrode surface when the target is detected. (<b>b</b>) This concept is illustrated in a schematic representation of the electrochemical aptasensor utilizing methylene blue (MB). (<b>c</b>) Another schematic diagram shows the Fc-based electrochemical aptasensor. When the target is present, the aptamer folds into a three-way junction that binds the target, which changes the electron transfer (eT) dynamics and results in a higher detected reduction peak. In the presence of the target, the aptamer takes on a constrained hairpin shape, and this change in conformation improves the efficiency of eT between the electrode surface and the ferrocene (Fc) probe [<a href="#B52-sensors-24-07432" class="html-bibr">52</a>,<a href="#B53-sensors-24-07432" class="html-bibr">53</a>].</p> "> Figure 3
<p>Diagrams showing optical aptasensors that use fluorescence: (<b>a</b>) show the most basic type of quenching aptamer beacon, in which the fluorescence is lowered due to the quencher and fluorophore being closer together because of target binding stabilizing the stem. (<b>b</b>) provides an example of the assembly aptamer beacon, in which oligomers assemble due to target binding, stabilizing the ternary complex. (<b>c</b>) displays the aptamer beacon after disassembly, when target binding causes antisense displacement to occur, increasing fluorescence [<a href="#B52-sensors-24-07432" class="html-bibr">52</a>].</p> "> Figure 4
<p>Schematic representations of optical aptasensors using AuNPs: (<b>a</b>) shows how target binding causes AuNPs to aggregate and release aptamers. (<b>b</b>) shows how target binding causes aptamers to release and AuNPs to disintegrate [<a href="#B52-sensors-24-07432" class="html-bibr">52</a>,<a href="#B66-sensors-24-07432" class="html-bibr">66</a>].</p> ">
Abstract
:1. Introduction
2. Aptamers Versus Antibodies
3. Aptamer-Based Biosensors
3.1. Electrochemical Aptasensors
3.2. Fluorescence-Based Optical Aptasensors
3.3. Colorimetric-Based Optical Aptasensors
4. Diagnostic Applications of Aptamers
4.1. Pathogens Recognition
4.2. Cancer Recognition
4.3. Diabetes Mellitus Diagnosis
4.4. Chronic Respiratory Diseases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amini, R.; Zhang, Z.; Li, J.; Gu, J.; Brennan, J.D.; Li, Y. Aptamers for SARS-CoV-2: Isolation, Characterization, and Diagnostic and Therapeutic Developments. Anal. Sens. 2022, 2, e202200012. [Google Scholar] [CrossRef] [PubMed]
- Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017, 1, 0076. [Google Scholar] [CrossRef]
- Qian, S.; Chang, D.; He, S.; Li, Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Anal. Chim. Acta 2022, 1196, 339511. [Google Scholar] [CrossRef] [PubMed]
- McConnell, E.M.; Cozma, I.; Morrison, D.; Li, Y. Biosensors made of synthetic functional nucleic acids toward better human health. Anal. Chem. 2020, 92, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Feng, Z.; Qin, H.; Chen, L.; Yan, M.; Li, L.; Qu, F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024, 266, 124998. [Google Scholar] [CrossRef]
- Le, A.T.; Krylova, S.M.; Beloborodov, S.S.; Wang, T.Y.; Hili, R.; Johnson, P.E.; Li, F.; Veedu, R.N.; Belyanskaya, S.; Krylov, S.N. How to develop and prove high-efficiency selection of ligands from oligonucleotide libraries: A universal framework for aptamers and DNA-encoded small-molecule ligands. Anal. Chem. 2021, 93, 5343–5354. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Mayer, G. Selection and biosensor application of aptamers for small molecules. Front. Chem. 2016, 4, 25. [Google Scholar] [CrossRef]
- Huang, T.; Song, Z.; Ying, R.; Jin, W. Protein-Nucleic Acid Complex Modeling with Frame Averaging Transformer. arXiv 2024, arXiv:2406.09586. [Google Scholar] [CrossRef]
- Hidding, J. A therapeutic battle: Antibodies vs. Aptamers. Nanosci. Master Program 2017, 109, 1–20. [Google Scholar]
- Li, J.; Zhang, Z.; Gu, J.; Stacey, H.D.; Ang, J.C.; Capretta, A.; Filipe, C.D.; Mossman, K.L.; Balion, C.; Salena, B.J. Diverse high-affinity DNA aptamers for wild-type and B. 1.1. 7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Res. 2021, 49, 7267–7279. [Google Scholar] [CrossRef]
- Brown, A.; Brill, J.; Amini, R.; Nurmi, C.; Li, Y. Development of better aptamers: Structured library approaches, selection methods, and chemical modifications. Angew. Chem. Int. Ed. 2024, 63, e202318665. [Google Scholar] [CrossRef] [PubMed]
- Mohammadinejad, A.; Gaman, L.E.; Aleyaghoob, G.; Gaceu, L.; Mohajeri, S.A.; Moga, M.A.; Badea, M. Aptamer-based targeting of cancer: A powerful tool for diagnostic and therapeutic aims. Biosensors 2024, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.W.; Shima, D.T.; Calias, P.; Cunningham, E.T., Jr.; Guyer, D.R.; Adamis, A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 2006, 5, 123–132. [Google Scholar] [CrossRef]
- Patel, S.S.; Lally, D.R.; Hsu, J.; Wykoff, C.C.; Eichenbaum, D.; Heier, J.S.; Jaffe, G.J.; Westby, K.; Desai, D.; Zhu, L. Avacincaptad pegol for geographic atrophy secondary to age-related macular degeneration: 18-month findings from the GATHER1 trial. Eye 2023, 37, 3551–3557. [Google Scholar] [CrossRef] [PubMed]
- Golubnitschaja, O.; Flammer, J. What are the biomarkers for glaucoma? Surv. Ophthalmol. 2007, 52, S155–S161. [Google Scholar] [CrossRef]
- Kumar, R.R.; Kumar, A.; Chuang, C.-H.; Shaikh, M.O. Recent advances and emerging trends in cancer biomarker detection technologies. Ind. Eng. Chem. Res. 2023, 62, 5691–5713. [Google Scholar] [CrossRef]
- Wang, G.; Su, X.; Xu, Q.; Xu, G.; Lin, J.; Luo, X. Antifouling aptasensor for the detection of adenosine triphosphate in biological media based on mixed self-assembled aptamer and zwitterionic peptide. Biosens. Bioelectron. 2018, 101, 129–134. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Samukaite-Bubniene, U.; Ratautaite, V.; Bechelany, M.; Ramanavicius, A. Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications. J. Pharm. Biomed. Anal. 2022, 215, 114739. [Google Scholar] [CrossRef]
- Lee, M.; Shin, S.; Kim, S.; Park, N. Recent advances in biological applications of aptamer-based fluorescent biosensors. Molecules 2023, 28, 7327. [Google Scholar] [CrossRef]
- Jaisree, S. Aptamers in diagnostic applications. Int. J. Vet. Sci. Anim. Husb. 2024, 9, 341–351. [Google Scholar] [CrossRef]
- Baird, G.S. Where are all the aptamers? Am. J. Clin. Pathol. 2010, 134, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Darmostuk, M.; Rimpelova, S.; Gbelcova, H.; Ruml, T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol. Adv. 2015, 33, 1141–1161. [Google Scholar] [CrossRef] [PubMed]
- Bruno, J.G. Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules 2015, 20, 6866–6887. [Google Scholar] [CrossRef]
- Doggrell, S.A. Pegaptanib: The first antiangiogenic agent approved for neovascular macular degeneration: GRAGOUNDAS ES, ADAMIS AP, CUNNINGHAM ET et al.: Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. (2004) 351: 2805-2816. Expert Opin. Pharmacother. 2005, 6, 1421–1423. [Google Scholar] [CrossRef] [PubMed]
- Röthlisberger, P.; Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018, 134, 3–21. [Google Scholar] [CrossRef]
- Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2017, 16, 181–202. [Google Scholar] [CrossRef]
- Zou, X.; Wu, J.; Gu, J.; Shen, L.; Mao, L. Application of aptamers in virus detection and antiviral therapy. Front. Microbiol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Tungsirisurp, S.; Frascione, N. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay. Biosensors 2024, 14, 509. [Google Scholar] [CrossRef]
- Mie, M.; Matsumoto, R.; Mashimo, Y.; Cass, A.E.; Kobatake, E. Development of drug-loaded protein nanoparticles displaying enzymatically-conjugated DNA aptamers for cancer cell targeting. Mol. Biol. Rep. 2019, 46, 261–269. [Google Scholar] [CrossRef]
- Kolm, C.; Cervenka, I.; Aschl, U.J.; Baumann, N.; Jakwerth, S.; Krska, R.; Mach, R.L.; Sommer, R.; DeRosa, M.C.; Kirschner, A.K. DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Sci. Rep. 2020, 10, 20917. [Google Scholar] [CrossRef]
- Maugi, R.; Gamble, B.; Bunka, D.; Platt, M. A simple displacement aptamer assay on resistive pulse sensor for small molecule detection. Talanta 2021, 225, 122068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, N.; Zhang, Z.; Xu, D.; Ma, S.; Wang, X.; Zhou, T.; Zhang, G.; Wang, F. Construction of aptamer-based molecular beacons with varied blocked structures and targeted detection of thrombin. Langmuir 2021, 37, 8738–8745. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Mathew, R.; Anand, A.; Bhardwaj, T.; Singh, A.; Singh, K.; Kumar, A.; Mishra, P.R.; Sharma, T.K. A DNA aptamer-based assay for the detection of soluble ST2, a prognostic biomarker for monitoring heart failure. Int. J. Biol. Macromol. 2024, 256, 128295. [Google Scholar] [CrossRef] [PubMed]
- Fellows, T.; Ho, L.; Flanagan, S.; Fogel, R.; Ojo, D.; Limson, J. Gold nanoparticle-streptavidin conjugates for rapid and efficient screening of aptamer function in lateral flow sensors using novel CD4-binding aptamers identified through Crossover-SELEX. Analyst 2020, 145, 5180–5193. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Yeom, G.; Ha, S.-J.; Kim, M.-G. Development of a DNA aptamer selection method based on the heterogeneous sandwich form and its application in a colorimetric assay for influenza A virus detection. New J. Chem. 2019, 43, 6883–6889. [Google Scholar] [CrossRef]
- Liang, S.; Kinghorn, A.B.; Voliotis, M.; Prague, J.K.; Veldhuis, J.D.; Tsaneva-Atanasova, K.; McArdle, C.A.; Li, R.H.; Cass, A.E.; Dhillo, W.S. Measuring luteinising hormone pulsatility with a robotic aptamer-enabled electrochemical reader. Nat. Commun. 2019, 10, 852. [Google Scholar] [CrossRef]
- Chinnappan, R.; AlZabn, R.; Abu-Salah, K.M.; Zourob, M. An aptamer based fluorometric microcystin-LR assay using DNA strand-based competitive displacement. Microchim. Acta 2019, 186, 435. [Google Scholar] [CrossRef]
- Yuan, Y.; Song, M.; Cao, Y.; Huang, Q.; Lu, F. Fine-tuning of aptamer complementary DNA for fluorescence resonance energy transfer assay. Microchem. J. 2023, 184, 108163. [Google Scholar] [CrossRef]
- Forier, C.; Boschetti, E.; Ouhammouch, M.; Cibiel, A.; Ducongé, F.; Nogré, M.; Tellier, M.; Bataille, D.; Bihoreau, N.; Santambien, P. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources. J. Chromatogr. A 2017, 1489, 39–50. [Google Scholar] [CrossRef]
- ul ain Zahra, Q.; Mohsan, S.A.H.; Shahzad, F.; Qamar, M.; Qiu, B.; Luo, Z.; Zaidi, S.A. Progress in smartphone-enabled aptasensors. Biosens. Bioelectron. 2022, 215, 114509. [Google Scholar]
- Rahimizadeh, K.; ul ain Zahra, Q.; Chen, S.; Le, B.T.; Ullah, I.; Veedu, R.N. Nanoparticles-assisted aptamer biosensing for the detection of environmental pathogens. Environ. Res. 2023, 238, 117123. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhao, S.; Chen, Z.-F.; Shi, M.; Liang, H. Amplified fluorescence polarization aptasensors based on structure-switching-triggered nanoparticles enhancement for bioassays. Chem. Commun. 2012, 48, 7480–7482. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Liang, Z.; Zhou, N. Design strategies for aptamer-based biosensors. Sensors 2010, 10, 4541–4557. [Google Scholar] [CrossRef] [PubMed]
- Lakhin, A.; Tarantul, V.Z.; Gening, L. Aptamers: Problems, solutions and prospects. Acta Nat. (англoязычная версия) 2013, 5, 34–43. [Google Scholar] [CrossRef]
- Ocaña, C.; Pacios, M.; Del Valle, M. A reusable impedimetric aptasensor for detection of thrombin employing a graphite-epoxy composite electrode. Sensors 2012, 12, 3037–3048. [Google Scholar] [CrossRef]
- Feng, L.; Chen, Y.; Ren, J.; Qu, X. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 2011, 32, 2930–2937. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, B.S.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules 2019, 24, 941. [Google Scholar] [CrossRef]
- Sriram, B.; Kogularasu, S.; Wang, S.-F.; Sheu, J.-K. Deep eutectic solvent-mediated synthesis of spinel zinc chromite nanoparticles: A simple label-free electrochemical sensor for dopamine and ascorbic acid. ACS Appl. Nano Mater. 2023, 6, 17593–17602. [Google Scholar] [CrossRef]
- Elanthamilan, E.; Wang, S.-F. Signal Amplification for Detection of Nilutamide in Three-Dimensional Electrochemical Sensor Using Copper Metal–Organic Framework Decorated Carbon Nanofibers. Chemosensors 2023, 11, 544. [Google Scholar] [CrossRef]
- Baryeh, K.; Takalkar, S.; Lund, M.; Liu, G. Introduction to medical biosensors for point of care applications. In Medical Biosensors for Point of Care (POC) Applications; Woodhead Publishing: Sawston, UK, 2017; pp. 3–25. [Google Scholar]
- Umme, S.; Siciliano, G.; Primiceri, E.; Turco, A.; Tarantini, I.; Ferrara, F.; Chiriacò, M.S. Electrochemical Sensors for Liquid Biopsy and Their Integration into Lab-on-Chip Platforms: Revolutionizing the Approach to Diseases. Chemosensors 2023, 11, 517. [Google Scholar] [CrossRef]
- Song, K.-M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-F.; Zhao, X.; Yang, Z. Aptasensors for the detection of infectious pathogens: Design strategies and point-of-care testing. Microchim. Acta 2022, 189, 443. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Lim, H.S.; Ma, Q.; Gao, Z. Optical aptasensors for adenosine triphosphate. Theranostics 2016, 6, 1683. [Google Scholar] [CrossRef] [PubMed]
- Alyamani, B.J.; Alsager, O.A.; Zourob, M. Label-Free Fluorescent Aptasensor for Small Targets via Displacement of Groove Bound Curcumin Molecules. Sensors 2019, 19, 4181. [Google Scholar] [CrossRef] [PubMed]
- Rashidiani, J.; Eskandari, K.; Mousavy, S.J.; Taheri, R.A.; Kooshki, H. Nano-aptasensor: Strategies and categorizing. Int. J. Med. Rev. 2018, 5, 68–76. [Google Scholar] [CrossRef]
- Liu, S.; Deng, H.; Deng, X.; Sun, S.; Xiong, Y.; Li, W.; Wen, Q.; Ren, J.; Chen, Y.; Wang, X. A label-free fluorescence sensing strategy based on gold nanoparticles assisted copper nanoclusters for the detection of aflatoxin B1 in cereals and peanuts. J. Food Compos. Anal. 2024, 135, 106573. [Google Scholar] [CrossRef]
- Yang, T.; Luo, Z.; Tian, Y.; Qian, C.; Duan, Y. Design strategies of AuNPs-based nucleic acid colorimetric biosensors. TrAC Trends Anal. Chem. 2020, 124, 115795. [Google Scholar] [CrossRef]
- Gao, X.-G.; Cheng, L.-X.; Jiang, W.-S.; Li, X.-K.; Xing, F. Graphene and its derivatives-based optical sensors. Front. Chem. 2021, 9, 615164. [Google Scholar] [CrossRef]
- Ji, G.; Tian, J.; Xing, F.; Feng, Y. Optical biosensor based on graphene and its derivatives for detecting biomolecules. Int. J. Mol. Sci. 2022, 23, 10838. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, J.; Hu, G.; Zhang, E.; Yu, H.-H. Colorimetric Sensors for Chemical and Biological Sensing Applications. Sensors 2023, 23, 2749. [Google Scholar] [CrossRef]
- Rostami, S.; Mehdinia, A.; Jabbari, A. Intrinsic peroxidase-like activity of graphene nanoribbons for label-free colorimetric detection of dopamine. Mater. Sci. Eng. C 2020, 114, 111034. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Liu, X.; Zu, Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021, 11, 9133. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.; Kumari, V.; Sharma, V.; Ahmad, F. Gold nanoparticle-based sensors in food safety applications. Food Anal. Methods 2022, 15, 468–484. [Google Scholar] [CrossRef]
- Contreras-Trigo, B.; Díaz-García, V.; Oyarzún, P. A Novel Preanalytical Strategy Enabling Application of a Colorimetric Nanoaptasensor for On-Site Detection of AFB1 in Cattle Feed. Sensors 2022, 22, 9280. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Lv, Z.; Liu, J.; Bai, W.; Yang, S.; Chen, A. Colorimetric aptasensor using unmodified gold nanoparticles for homogeneous multiplex detection. PLoS ONE 2014, 9, e109263. [Google Scholar] [CrossRef]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529. [Google Scholar] [CrossRef]
- Ramírez-Castillo, F.Y.; Loera-Muro, A.; Jacques, M.; Garneau, P.; Avelar-González, F.J.; Harel, J.; Guerrero-Barrera, A.L. Waterborne pathogens: Detection methods and challenges. Pathogens 2015, 4, 307–334. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y. Airborne spread of infectious agents in the indoor environment. Am. J. Infect. Control 2016, 44, S102–S108. [Google Scholar] [CrossRef]
- Drossinos, Y.; Stilianakis, N.I. What aerosol physics tells us about airborne pathogen transmission. Aerosol Sci. Technol. 2020, 54, 639–643. [Google Scholar] [CrossRef]
- Ma, Y.X.; Wang, C.Y.; Li, Y.Y.; Li, J.; Wan, Q.Q.; Chen, J.H.; Tay, F.R.; Niu, L.N. Considerations and caveats in combating ESKAPE pathogens against nosocomial infections. Adv. Sci. 2020, 7, 1901872. [Google Scholar] [CrossRef]
- Bourouiba, L. The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 2021, 53, 473–508. [Google Scholar] [CrossRef]
- Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 2020, 21, 224. [Google Scholar] [CrossRef] [PubMed]
- Marchini, T.; Zirlik, A.; Wolf, D. Pathogenic role of air pollution particulate matter in cardiometabolic disease: Evidence from mice and humans. Antioxid. Redox Signal. 2020, 33, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yoon, Y. Etiological agents implicated in foodborne illness world wide. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dubey, M.K.; Meena, M.; Aamir, M.; Zehra, A.; Upadhyay, R. Chapter 19—Regulation and Role of Metal Ions in Secondary Metabolite Production by Microorganisms. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 259–277. [Google Scholar] [CrossRef]
- Fearon, M.L.; Tibbetts, E.A. Pollinator community species richness dilutes prevalence of multiple viruses within multiple host species. Ecology 2021, 102, e03305. [Google Scholar] [CrossRef]
- Katzmarski, N.; Domínguez-Andrés, J.; Cirovic, B.; Renieris, G.; Ciarlo, E.; Le Roy, D.; Lepikhov, K.; Kattler, K.; Gasparoni, G.; Händler, K. Transmission of trained immunity and heterologous resistance to infections across generations. Nat. Immunol. 2021, 22, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Judson, S.D.; Munster, V.J. Nosocomial transmission of emerging viruses via aerosol-generating medical procedures. Viruses 2019, 11, 940. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Zheng, W.; Li, B.; Wei, Y.; Zeng, J.; Lei, C. A tracing method of airborne bacteria transmission across built environments. Build. Environ. 2019, 164, 106335. [Google Scholar] [CrossRef]
- Rohr, J.R.; Civitello, D.J.; Halliday, F.W.; Hudson, P.J.; Lafferty, K.D.; Wood, C.L.; Mordecai, E.A. Towards common ground in the biodiversity–disease debate. Nat. Ecol. Evol. 2020, 4, 24–33. [Google Scholar] [CrossRef]
- Gallo Marin, B.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef] [PubMed]
- McCuin, R.M.; Bartrand, T.A.; Clancy, J.L. Legionella pneumophila recovery using Legiolert and a traditional culture method. AWWA Water Sci. 2021, 3, e1228. [Google Scholar] [CrossRef]
- Kizilkurtlu, A.A.; Demirbas, E.; Agel, H.E. Electrochemical aptasensors for pathogenic detection toward point-of-care diagnostics. Biotechnol. Appl. Biochem. 2023, 70, 1460–1479. [Google Scholar] [CrossRef] [PubMed]
- Market, G.A. Market Research Future. 2020. Available online: https://www.marketresearchfuture.com/sample_request/1381 (accessed on 5 March 2020).
- Zolti, O.; Suganthan, B.; Ramasamy, R.P. Lab-on-a-chip electrochemical biosensors for foodborne pathogen detection: A review of common standards and recent progress. Biosensors 2023, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Hu, J.; Lu, F. Aptamers used for biosensors and targeted therapy. Biomed. Pharmacother. 2020, 132, 110902. [Google Scholar] [CrossRef]
- Guo, X. Research progress on the detection of foodborne pathogens based on aptamer recognition. Microchim. Acta 2024, 191, 318. [Google Scholar] [CrossRef]
- Gopinath, S.C.; Kawasaki, K.; Kumar, P.K. Selection of RNA-aptamer against human influenza B virus. In Nucleic Acids Symposium Series; Oxford University Press: Oxford, UK, 2005; pp. 85–86. [Google Scholar]
- Nguyen, T.T.-Q.; Kim, E.R.; Gu, M.B. A new cognate aptamer pair-based sandwich-type electrochemical biosensor for sensitive detection of Staphylococcus aureus. Biosens. Bioelectron. 2022, 198, 113835. [Google Scholar] [CrossRef]
- Bethu, R.; Mittal, H.G.; Sharma, T.K.; Shulania, A.; Sharma, N.; Rangarajan, S.; Jain, P. Rapid diagnosis of TB using Aptamer-based assays for Mycobacterium tuberculosis antigens in children and adolescents. Lung India 2023, 40, 434–439. [Google Scholar] [CrossRef]
- Duan, N.; Wu, S.; Chen, X.; Huang, Y.; Wang, Z. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus. J. Agric. Food Chem. 2012, 60, 4034–4038. [Google Scholar] [CrossRef]
- He, Y.; Wei, J.; Ma, P.; Khan, I.M.; Zhang, L.; Sobia, N.; Xia, Y.; Wang, Z. Establishment of a dual-signal sandwich sensor for detection of Shigella sonnei based on truncated aptamers. Food Control 2024, 156, 110111. [Google Scholar] [CrossRef]
- Léguillier, V.; Heddi, B.; Vidic, J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. Biosensors 2024, 14, 210. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.C.; Hayashi, K.; Kumar, P.K. Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J. Virol. 2012, 86, 6732–6744. [Google Scholar] [CrossRef] [PubMed]
- Torres-Vázquez, B.; de Lucas, A.M.; García-Crespo, C.; García-Martín, J.A.; Fragoso, A.; Fernández-Algar, M.; Perales, C.; Domingo, E.; Moreno, M.; Briones, C. In vitro selection of high affinity DNA and RNA aptamers that detect hepatitis C virus core protein of genotypes 1 to 4 and inhibit virus production in cell culture. J. Mol. Biol. 2022, 434, 167501. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, D.H.; Mashkour, M.S.; Fatemi, F. Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of Hepatitis B virus. Chem. Pap. 2021, 75, 279–295. [Google Scholar] [CrossRef]
- Chinchilla-Cárdenas, D.J.; Cruz-Méndez, J.S.; Petano-Duque, J.M.; García, R.O.; Castro, L.R.; Lobo-Castañón, M.J.; Cancino-Escalante, G.O. Current developments of SELEX technologies and prospects in the aptamer selection with clinical applications. J. Genet. Eng. Biotechnol. 2024, 22, 100400. [Google Scholar] [CrossRef]
- Hu, C.; Yang, S.; Li, S.; Liu, X.; Liu, Y.; Chen, Z.; Chen, H.; Li, S.; He, N.; Cui, H. Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int. J. Biol. Macromol. 2024, 276, 133935. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.l.; Wu, J.; Qi, J.; Zeng, Z.; Wan, Q.; Chen, Z.; Manandhar, P.; Cavener, V.S.; Boyle, N.R. Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection. Angew. Chem. Int. Ed. 2021, 60, 10273–10278. [Google Scholar] [CrossRef]
- Nagarkatti, R.; de Araujo, F.F.; Gupta, C.; Debrabant, A. Aptamer based, non-PCR, non-serological detection of Chagas disease biomarkers in Trypanosoma cruzi infected mice. PLoS Neglected Trop. Dis. 2014, 8, e2650. [Google Scholar] [CrossRef]
- Guerra-Pérez, N.; Ramos, E.; García-Hernández, M.; Pinto, C.; Soto, M.; Martín, M.E.; González, V.M. Molecular and functional characterization of ssDNA aptamers that specifically bind Leishmania infantum PABP. PLoS ONE 2015, 10, e0140048. [Google Scholar] [CrossRef]
- Cheung, Y.-W.; Dirkzwager, R.M.; Wong, W.-C.; Cardoso, J.; Costa, J.D.A.N.; Tanner, J.A. Aptamer-mediated Plasmodium-specific diagnosis of malaria. Biochimie 2018, 145, 131–136. [Google Scholar] [CrossRef]
- Tang, M.S.; Shiu, S.C.-C.; Godonoga, M.; Cheung, Y.-W.; Liang, S.; Dirkzwager, R.M.; Kinghorn, A.B.; Fraser, L.A.; Heddle, J.G.; Tanner, J.A. An aptamer-enabled DNA nanobox for protein sensing. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Godonoga, M.; Lin, T.-Y.; Oshima, A.; Sumitomo, K.; Tang, M.S.; Cheung, Y.-W.; Kinghorn, A.B.; Dirkzwager, R.M.; Zhou, C.; Kuzuya, A. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly. Sci. Rep. 2016, 6, 21266. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Chakma, B.; Singh, N.K.; Patra, S.; Goswami, P. Aromatic surfactant as aggregating agent for aptamer-gold nanoparticle-based detection of Plasmodium lactate dehydrogenase. Mol. Biotechnol. 2016, 58, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Geldert, A.; Zhang, X.; Zhang, H.; Lim, C.T. Enhancing the sensing specificity of a MoS 2 nanosheet-based FRET aptasensor using a surface blocking strategy. Analyst 2017, 142, 2570–2577. [Google Scholar] [CrossRef]
- Frith, K.-A.; Fogel, R.; Goldring, J.D.; Krause, R.G.; Khati, M.; Hoppe, H.; Cromhout, M.E.; Jiwaji, M.; Limson, J.L. Towards development of aptamers that specifically bind to lactate dehydrogenase of Plasmodium falciparum through epitopic targeting. Malar. J. 2018, 17, 191. [Google Scholar] [CrossRef]
- Fraser, L.A.; Kinghorn, A.B.; Dirkzwager, R.M.; Liang, S.; Cheung, Y.-W.; Lim, B.; Shiu, S.C.-C.; Tang, M.S.; Andrew, D.; Manitta, J. A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis. Biosens. Bioelectron. 2018, 100, 591–596. [Google Scholar] [CrossRef]
- Dirkzwager, R.M.; Kinghorn, A.B.; Richards, J.S.; Tanner, J.A. APTEC: Aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria. Chem. Commun. 2015, 51, 4697–4700. [Google Scholar] [CrossRef]
- Choi, S.-J.; Ban, C. Crystal structure of a DNA aptamer bound to Pv LDH elucidates novel single-stranded DNA structural elements for folding and recognition. Sci. Rep. 2016, 6, 34998. [Google Scholar] [CrossRef]
- Wang, W.-X.; Cheung, Y.-W.; Dirkzwager, R.M.; Wong, W.-C.; Tanner, J.A.; Li, H.-W.; Wu, Y. Specific and sensitive detection of Plasmodium falciparum lactate dehydrogenase by DNA-scaffolded silver nanoclusters combined with an aptamer. Analyst 2017, 142, 800–807. [Google Scholar] [CrossRef]
- Iqbal, A.; Labib, M.; Muharemagic, D.; Sattar, S.; Dixon, B.R.; Berezovski, M.V. Detection of Cryptosporidium parvum oocysts on fresh produce using DNA aptamers. PLoS ONE 2015, 10, e0137455. [Google Scholar] [CrossRef]
- Ospina-Villa, J.D.; Dufour, A.; Weber, C.; Ramirez-Moreno, E.; Zamorano-Carrillo, A.; Guillen, N.; Lopez-Camarillo, C.; Marchat, L.A. Targeting the polyadenylation factor EhCFIm25 with RNA aptamers controls survival in Entamoeba histolytica. Sci. Rep. 2018, 8, 5720. [Google Scholar] [CrossRef]
- Ospina-Villa, J.D.; López-Camarillo, C.; Castañón-Sánchez, C.A.; Soto-Sánchez, J.; Ramírez-Moreno, E.; Marchat, L.A. Advances on aptamers against protozoan parasites. Genes 2018, 9, 584. [Google Scholar] [CrossRef] [PubMed]
- Abrego-Martinez, J.C.; Jafari, M.; Chergui, S.; Pavel, C.; Che, D.; Siaj, M. Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: Nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy. Biosens. Bioelectron. 2022, 195, 113595. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-Y.; Chen, X.; Liu, T.; Li, J.; Yang, H.-H.; Chen, J.-H.; Chen, G.-N. Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers. Biosens. Bioelectron. 2013, 50, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Kadhim, M.M.; Rheima, A.M.; Abbas, Z.S.; Jlood, H.H.; Hachim, S.K.; Kadhum, W.R. Evaluation of a biosensor-based graphene oxide-DNA nanohybrid for lung cancer. RSC Adv. 2023, 13, 2487–2500. [Google Scholar] [CrossRef] [PubMed]
- Gundagatti, S.; Srivastava, S. An optimization of blocking agents for designing reliable electrochemical biosensors for ovarian cancer. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef]
- Altintas, Z.; Tothill, I. Biomarkers and biosensors for the early diagnosis of lung cancer. Sens. Actuators B Chem. 2013, 188, 988–998. [Google Scholar] [CrossRef]
- Vandghanooni, S.; Sanaat, Z.; Farahzadi, R.; Eskandani, M.; Omidian, H.; Omidi, Y. Recent progress in the development of aptasensors for cancer diagnosis: Focusing on aptamers against cancer biomarkers. Microchem. J. 2021, 170, 106640. [Google Scholar] [CrossRef]
- Shin, Y.; Perera, A.P.; Park, M.K. Label-free DNA sensor for detection of bladder cancer biomarkers in urine. Sens. Actuators B Chem. 2013, 178, 200–206. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Zamanian, M.Y.; Al-Ani, A.M.; Jabbar, T.L.; Kareem, A.K.; Aghaei, Z.H.; Tahernia, H.; Hjazi, A.; Jissir, S.A.-r.; Hakimizadeh, E. Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review. Anim. Models Exp. Med. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Won, J.Y.; Choi, J.-W.; Min, J. Micro-fluidic chip platform for the characterization of breast cancer cells using aptamer-assisted immunohistochemistry. Biosens. Bioelectron. 2013, 40, 161–166. [Google Scholar]
- Metaferia, B.; Wei, J.S.; Song, Y.K.; Evangelista, J.; Aschenbach, K.; Johansson, P.; Wen, X.; Chen, Q.; Lee, A.; Hempel, H. Development of peptide nucleic acid probes for detection of the HER2 oncogene. PLoS ONE 2013, 8, e58870. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yang, J.; Liu, M.; Wu, Y.; Shen, Z.; Li, G. Sensitive detection of human breast cancer cells based on aptamer–cell–aptamer sandwich architecture. Anal. Chim. Acta 2013, 764, 59–63. [Google Scholar] [CrossRef]
- Wang, J.; Munir, A.; Li, Z.; Zhou, H.S. Aptamer–Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay. Biosens. Bioelectron. 2009, 25, 124–129. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Zhang, L.; Ding, Y.; Luo, Y.; Xu, Q.; Shi, J.; Cao, L.; Fu, W. Rapid detection of human papilloma virus using a novel leaky surface acoustic wave peptide nucleic acid biosensor. Biosens. Bioelectron. 2009, 24, 3455–3460. [Google Scholar] [CrossRef]
- Snyder, R. Leukemia and benzene. Int. J. Environ. Res. Public Health 2012, 9, 2875–2893. [Google Scholar] [CrossRef]
- Shan, W.; Pan, Y.; Fang, H.; Guo, M.; Nie, Z.; Huang, Y.; Yao, S. An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label. Talanta 2014, 126, 130–135. [Google Scholar] [CrossRef]
- Liu, C.-W.; Huang, C.-C.; Chang, H.-T. Highly selective DNA-based sensor for lead (II) and mercury (II) ions. Anal. Chem. 2009, 81, 2383–2387. [Google Scholar] [CrossRef]
- Kong, H.Y.; Byun, J. Nucleic acid aptamers: New methods for selection, stabilization, and application in biomedical science. Biomol. Ther. 2013, 21, 423. [Google Scholar] [CrossRef]
- Pandiyan, S.M.; Kenned, K.S.S.S.; Thenra, J.; Narayanamurthy, V.; Anisha, M. Blood flow separator design in passive lab-on-chip device. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019, 9, 947–951. [Google Scholar] [CrossRef]
- Pastor, F.; Berraondo, P.; Etxeberria, I.; Frederick, J.; Sahin, U.; Gilboa, E.; Melero, I. An RNA toolbox for cancer immunotherapy. Nat. Rev. Drug Discov. 2018, 17, 751–767. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Wang, H.; Chen, Y.; Zhang, X.; Zhu, H.; Yang, C.; Yang, R.; Liu, C. Molecular aptamers for drug delivery. Trends Biotechnol. 2011, 29, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, X.; Jiang, H. Current Status and Prospect of Diabetes Diagnosis and Treatment Based on Biosensing Technology. Chemosensors 2023, 11, 391. [Google Scholar] [CrossRef]
- Xiang, Y.; Lu, Y. Using commercially available personal glucose meters for portable quantification of DNA. Anal. Chem. 2012, 84, 1975–1980. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, S.-R.; Lee, J.; Yeo, J.; Na, H.-K.; Kim, Y.-K.; Jang, H.; Lee, J.H.; Han, S.W.; Lee, Y.; Kim, V.N. Quantitative and multiplexed microRNA sensing in living cells based on peptide nucleic acid and nano graphene oxide (PANGO). ACS Nano 2013, 7, 5882–5891. [Google Scholar] [CrossRef]
- Lee, S.J.; Youn, B.-S.; Park, J.W.; Niazi, J.H.; Kim, Y.S.; Gu, M.B. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal. Chem. 2008, 80, 2867–2873. [Google Scholar] [CrossRef]
- World Health Organization. Noncommunicable Diseases Country Profiles 2018; WHO: Geneva, Switzerland, 2018; ISBN 978-92-4-151462-0. [Google Scholar]
- Anderson, G.F.; Squires, D.A. Measuring the US health care system: A cross-national comparison. Issue Brief (Commonw. Fund) 2010, 90, 1–10. [Google Scholar]
- Tunstall-Pedoe, H. Preventing Chronic Diseases. A Vital Investment: WHO Global Report. Geneva: World Health Organization, 2005. pp 200. CHF 30.00. ISBN 92 4 1563001. Int. J. Epidemiol. 2006, 35, 1107. [Google Scholar] [CrossRef]
- Korhonen, I.; Parkka, J.; Van Gils, M. Health monitoring in the home of the future. IEEE Eng. Med. Biol. Mag. 2003, 22, 66–73. [Google Scholar] [CrossRef]
- Bleakley, H.; Lange, F. Chronic disease burden and the interaction of education, fertility, and growth. Rev. Econ. Stat. 2009, 91, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Zamay, G.S.; Zamay, T.N.; Kolovskii, V.A.; Shabanov, A.V.; Glazyrin, Y.E.; Veprintsev, D.V.; Krat, A.V.; Zamay, S.S.; Kolovskaya, O.S.; Gargaun, A. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Sci. Rep. 2016, 6, 34350. [Google Scholar] [CrossRef] [PubMed]
- Zribi, B.; Roy, E.; Pallandre, A.; Chebil, S.; Koubaa, M.; Mejri, N.; Magdinier Gomez, H.; Sola, C.; Korri-Youssoufi, H.; Haghiri-Gosnet, A.-M. A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics 2016, 10, 014115. [Google Scholar] [CrossRef] [PubMed]
- Futane, A.; Narayanamurthy, V.; Jadhav, P.; Srinivasan, A. Aptamer-based rapid diagnosis for point-of-care application. Microfluid. Nanofluid. 2023, 27, 15. [Google Scholar] [CrossRef]
Criteria | Aptamers | Monoclonal Antibodies |
---|---|---|
Molecular weight/size | Molecular weight range: 6–30 kDa (20–100 nucleotides) the size of 2 nm | 150–180 kDa, high molecular weight 15 nm or so |
Possible targets | A wide variety of substances, including as organic molecules, ions, nucleic acids, carbohydrates, amino acids peptides, cells, toxins, organic compounds and antibiotics might serve as possible targets | only immune-stimulating substances, low toxins |
Creation and production | In vitro SELEX 2 to 8 weeks, although with HTS-SELEX, it may only take hours. Minimal chance of contamination. Possibility of mass manufacture. It is possible to change the environmental selection criteria | In vivo biological system. Biological system used in vivo around 6 months or more. Possible contaminant brought on by the use of animal products or cells. It is impossible to produce on a large scale without sacrificing the final product’s quality. The ambient factors must be compatible with the physiological setting. |
Reproducibility | No batch-to-batch fluctuation and high reproducibility | Large batch-to-batch variations |
Maintenance | Enduring quality and strength able to be lyophilized, conveyed conveniently, and kept at room temperature | A short shelf life, instability For storage and transit, it must be chilled. Sensitive |
Physical and thermal stability | Tolerant of extreme temperatures. May be denatured reversibly. Reusable | Temperature-sensitive (even at 37 °C or room temperature). Vulnerable to permanent denaturation. Single use |
Chemical Modification | Numerous site-specific chemical alterations that can be conveniently carried out during synthesis or before selection | Limited, non-specific, and inconsistent chemical changes |
Immunogenicity | None or low | High |
Pharmacokinetics (nuclease decay, kidney filtration, and tissue absorption) | Highly effective biological compartment entrance, sensitive to renal filtration and nucleases Pharmacokinetic qualities with a short half-life can be enhanced | Restricted access to many biological compartments, resistant to nucleases, and incapable of undergoing renal filtration. Long circulation half-lives make pharmacokinetic changes difficult |
Specific antidote | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheraz, M.; Sun, X.-F.; Wang, Y.; Chen, J.; Sun, L. Recent Developments in Aptamer-Based Sensors for Diagnostics. Sensors 2024, 24, 7432. https://doi.org/10.3390/s24237432
Sheraz M, Sun X-F, Wang Y, Chen J, Sun L. Recent Developments in Aptamer-Based Sensors for Diagnostics. Sensors. 2024; 24(23):7432. https://doi.org/10.3390/s24237432
Chicago/Turabian StyleSheraz, Muhammad, Xiao-Feng Sun, Yongke Wang, Jiayi Chen, and Le Sun. 2024. "Recent Developments in Aptamer-Based Sensors for Diagnostics" Sensors 24, no. 23: 7432. https://doi.org/10.3390/s24237432
APA StyleSheraz, M., Sun, X. -F., Wang, Y., Chen, J., & Sun, L. (2024). Recent Developments in Aptamer-Based Sensors for Diagnostics. Sensors, 24(23), 7432. https://doi.org/10.3390/s24237432