Polarization-Enhanced Underwater Laser Range-Gated Imaging for Subaquatic Applications
<p>Program workflow of the polarization enhancement algorithm.</p> "> Figure 2
<p>Polarization camera used to validate the polarization enhancement algorithm.</p> "> Figure 3
<p>Original image and algorithm-enhanced image. (<b>a</b>) Normal polarized image of <math display="inline"><semantics> <msup> <mn>0</mn> <mo>°</mo> </msup> </semantics></math>. (<b>b</b>) Normal polarized image of <math display="inline"><semantics> <msup> <mn>90</mn> <mo>°</mo> </msup> </semantics></math>. (<b>c</b>) Original image. (<b>d</b>) Reconstruced image by Schechner’s method <math display="inline"><semantics> <msup> <mn>90</mn> <mo>°</mo> </msup> </semantics></math>. (<b>e</b>) Reconstruced image by CLAHE. (<b>f</b>) Reconstruced image by polynomial fitting. (<b>g</b>) Reconstruced image by Butterworth filter. (<b>h</b>) Reconstruced image by method in the paper.</p> "> Figure 4
<p>Scene of the image taken by a polarization camera.</p> "> Figure 5
<p>Range-gated system.</p> "> Figure 6
<p>Experiment imaging target.</p> "> Figure 7
<p>Examination of the preservation of the polarization state of the image by adjusting the angle of the polarizer.</p> "> Figure 8
<p>Experimental setup for polarization-enhanced laser range-gated imaging.</p> "> Figure 9
<p>The coin used in the experiment.</p> "> Figure 10
<p>Original images of the three materials, along with images obtained and enhanced using the polarization algorithm. (<b>a</b>) Range-gated image of target board. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math>. (<b>d</b>) Polarization-enhanced range-gated images of target board. (<b>e</b>) Range-gated image of metal sheet. (<b>f</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math>. (<b>g</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math>. (<b>h</b>) Polarization-enhanced range-gated images of metal sheet. (<b>i</b>) Range-gated image of diving suit. (<b>j</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math>. (<b>k</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math>. (<b>l</b>) Polarization-enhanced range-gated images of diving suit.</p> "> Figure 11
<p>Original images of the target at different turbidities, along with images obtained and enhanced using the polarization algorithm. (<b>a</b>) Range-gated image. (<b>b</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math>. (<b>d</b>) Polarization-enhanced range-gated images of the target board under turibidity of 1.70 NTU. (<b>e</b>) Range-gated image. (<b>f</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math>. (<b>g</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math>. (<b>h</b>) Polarization-enhanced range-gated images of the target board under turibidity of 3.89 NTU. (<b>i</b>) Range-gated image. (<b>j</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math>. (<b>k</b>) <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math>. (<b>l</b>) Polarization-enhanced range-gated images of the target board under turibidity of 5.41 NTU.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principles of Polarization-Enhanced Range-Gated Imaging Technology
2.1.1. Polarization Enhancement
2.1.2. Range-Gated Imaging
2.2. Principle Verification Experiment
2.2.1. Image Evaluation Indicators
2.2.2. Practical Parameter Acquisition in Polarization-Enhanced Range-Gated Imaging Experiment
2.2.3. Verification of the Polarization State Received in the Range-Gated System
2.2.4. Validation Experiment in a Small Water Tank
3. Polarization-Enhanced Range-Gated Imaging Experiment Results
3.1. Polarization Enhancement Effect under Different Material Conditions
3.2. Polarization Enhancement Effect under Different Turbidity Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Z.; Yu, L.; Cao, D.; Wu, Q.; Yu, X.; Lin, G. Airborne ultraviolet imaging system for oil slick surveillance: Oil–seawater contrast, imaging concept, signal-to-noise ratio, optical design, and optomechanical model. Appl. Opt. 2015, 54, 7648–7655. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, C.; Liu, Y.; Wang, S.; Huang, F. Underwater optical imaging: Key technologies and applications review. IEEE Access 2021, 9, 85500–85514. [Google Scholar] [CrossRef]
- Wolff, L.B. Polarization vision: A new sensory approach to image understanding. Image Vis. Comput. 1997, 15, 81–93. [Google Scholar] [CrossRef]
- Huo, G.; Wu, Z.; Li, J.; Li, S. Underwater target detection and 3D reconstruction system based on binocular vision. Sensors 2018, 18, 3570. [Google Scholar] [CrossRef]
- He, D.M.; Seet, G.G. Underwater LIDAR imaging in highly turbid waters. In Proceedings of the Ocean Optics: Remote Sensing and Underwater Imaging, San Diego, CA, USA, 29 July–3 August 2002; Volume 4488, pp. 71–81. [Google Scholar]
- Shashar, N.; Cronin, T.W. Polarization contrast vision in Octopus. J. Exp. Biol. 1996, 199, 999–1004. [Google Scholar] [CrossRef]
- Schechner, Y.Y.; Karpel, N. Recovery of underwater visibility and structure by polarization analysis. IEEE J. Ocean. Eng. 2005, 30, 570–587. [Google Scholar] [CrossRef]
- Treibitz, T.; Schechner, Y.Y. Active polarization descattering. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 385–399. [Google Scholar] [CrossRef]
- Dubreuil, M.; Delrot, P.; Leonard, I.; Alfalou, A.; Brosseau, C.; Dogariu, A. Exploring underwater target detection by imaging polarimetry and correlation techniques. Appl. Opt. 2013, 52, 997–1005. [Google Scholar] [CrossRef]
- Liu, F.; Han, P.; Wei, Y.; Yang, K.; Huang, S.; Li, X.; Zhang, G.; Bai, L.; Shao, X. Deeply seeing through highly turbid water by active polarization imaging. Opt. Lett. 2018, 43, 4903–4906. [Google Scholar] [CrossRef]
- Huang, B.; Liu, T.; Hu, H.; Han, J.; Yu, M. Underwater image recovery considering polarization effects of objects. Opt. Express 2016, 24, 9826–9838. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, L.; Li, X.; Wang, H.; Liu, T. Underwater image recovery under the nonuniform optical field based on polarimetric imaging. IEEE Photonics J. 2018, 10, 6900309. [Google Scholar] [CrossRef]
- Li, H.; Zhu, J.; Deng, J.; Guo, F.; Yue, L.; Sun, J.; Zhang, Y.; Hou, X. Visibility enhancement of underwater images based on polarization common-mode rejection of a highly polarized target signal. Opt. Express 2022, 30, 43973–43986. [Google Scholar] [CrossRef]
- Liu, F.; Cao, L.; Shao, X.; Han, P.; Bin, X. Polarimetric dehazing utilizing spatial frequency segregation of images. Appl. Opt. 2015, 54, 8116–8122. [Google Scholar] [CrossRef]
- Feng, F.; Wu, G.; Wu, Y.; Miao, Y.; Liu, B. Algorithm for underwater polarization imaging based on global estimation. Acta Opt. Sin 2020, 40, 75–83. [Google Scholar]
- Wang, J.; Wan, M.; Gu, G.; Qian, W.; Ren, K.; Huang, Q.; Chen, Q. Periodic integration-based polarization differential imaging for underwater image restoration. Opt. Lasers Eng. 2022, 149, 106785. [Google Scholar] [CrossRef]
- Liang, J.; Ren, L.; Liang, R. Low-pass filtering based polarimetric dehazing method for dense haze removal. Opt. Express 2021, 29, 28178–28189. [Google Scholar] [CrossRef]
- Yu, T.; Wang, X.; Xi, S.; Mu, Q.; Zhu, Z. Underwater polarization imaging for visibility enhancement of moving targets in turbid environments. Opt. Express 2023, 31, 459–468. [Google Scholar] [CrossRef]
- Heckman, P.; Hodgson, R. 2.7-Underwater optical range gating. IEEE J. Quantum Electron. 1967, 3, 445–448. [Google Scholar] [CrossRef]
- Fournier, G.R.; Bonnier, D.; Forand, J.L.; Pace, P.W. Range-gated underwater laser imaging system. Opt. Eng. 1993, 32, 2185–2190. [Google Scholar] [CrossRef]
- Wang, X.; Sun, L.; Lei, P.; Chen, J.; He, J.; Zhou, Y. High-resolution 3D range gated laser imaging for unmanned underwater vehicles. In Proceedings of the Real-Time Photonic Measurements, Data Management, and Processing VI, Nantong, China, 10–20 October 2021; Volume 11902, pp. 24–41. [Google Scholar]
- Hou, W.; Gray, D.J.; Weidemann, A.D.; Fournier, G.R.; Forand, J. Automated underwater image restoration and retrieval of related optical properties. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 1889–1892. [Google Scholar]
- Driewer, A.; Abrosimov, I.; Alexander, J.; Benger, M.; O’Farrell, M.; Haugholt, K.H.; Softley, C.; Thielemann, J.T.; Thorstensen, J.; Yates, C. UTOFIA: An underwater time-of-flight image acquisition system. In Proceedings of the Electro-Optical Remote Sensing XI, Warsaw, Poland, 11–14 September 2017; Volume 10434, pp. 9–18. [Google Scholar]
- Wang, H.; Hu, H.; Jiang, J.; Li, X.; Zhang, W.; Cheng, Z.; Liu, T. Automatic underwater polarization imaging without background region or any prior. Opt. Express 2021, 29, 31283–31295. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, M.; Wang, H.; Yao, J.; Zhang, Y. Fast processing of underwater polarization imaging based on optical correlation. Appl. Opt. 2021, 60, 4462–4468. [Google Scholar] [CrossRef]
- Huang, F.; Qiu, S.; Liu, H.; Liu, Y.; Wang, P. Active imaging through dense fog by utilizing the joint polarization defogging and denoising optimization based on range-gated detection. Opt. Express 2023, 31, 25527–25544. [Google Scholar] [CrossRef]
- Xinwei, W.; Yan, Z.; Songtao, F.; Yuliang, L.; Hongjun, L. Echo broadening effect in range-gated active imaging technique. In Proceedings of the SPIE, the International Society for Optical Engineering; Society of Photo-Optical Instrumentation Engineers: Bellingham, WA, USA, 2009. [Google Scholar]
- Wang, M.; Wang, X.; Sun, L.; Yang, Y.; Zhou, Y. Underwater 3D deblurring-gated range-intensity correlation imaging. Opt. Lett. 2020, 45, 1455–1458. [Google Scholar] [CrossRef]
- Xi, L.; Guosui, L.; Ni, J. Autofocusing of ISAR images based on entropy minimization. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 1240–1252. [Google Scholar] [CrossRef]
- Agaian, S.S.; Panetta, K.; Grigoryan, A.M. Transform-based image enhancement algorithms with performance measure. IEEE Trans. Image Process. 2001, 10, 367–382. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems; Academic Press Professional, Inc.: San Diego, CA, USA, 1994; pp. 474–485. [Google Scholar]
- Jane Behrens, D.A. Report on Behavioural Studies to Laser Light Source Available. 2016. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a8587ed1&appId=PPGMS (accessed on 29 April 2016).
Enhancement Method | EME | Contrast | Entropy |
---|---|---|---|
Original image | 6.745 | 2.334 | 2.934 |
Schechner’s method | 20.078 | 49.416 | 5.609 |
CLAHE | 9.030 | 55.521 | 5.147 |
Polynomial fitting | 1.590 | 14.651 | 5.618 |
Butterworth filter | 1.509 | 36.140 | 4.713 |
Method in the paper | 3.855 | 115.405 | 6.829 |
Turbidity/NTU | 41.8 | 52 | 61.8 | 69.3 |
---|---|---|---|---|
Pictures from conventional range-gated imaging | ||||
Pictures from polarization-enhanced range-gated imaging |
Polarization Imaging Optimization | Turbidity (NTU) | EME | Contrast | Entropy |
---|---|---|---|---|
NO | 41.8 | 10.575 | 143.894 | 6.985 |
YES | 41.8 | 11.758 | 157.358 | 7.180 |
NO | 52.0 | 5.861 | 75.569 | 7.498 |
YES | 52.0 | 7.276 | 90.700 | 7.396 |
NO | 61.8 | 5.073 | 59.639 | 7.492 |
YES | 61.8 | 24.898 | 107.390 | 7.547 |
NO | 69.3 | 4.533 | 27.877 | 6.750 |
YES | 69.3 | 42.124 | 125.698 | 7.335 |
Target | Polarization Enhancement | EME | Contrast | Entropy |
---|---|---|---|---|
target board | NO | 10.919 | 4.959 | 6.365 |
YES | 16.077 | 310.995 | 7.782 | |
metal sheet | NO | 62.194 | 1.297 | 3.825 |
YES | 82.792 | 402.347 | 5.260 | |
diving suit | NO | 8.251 | 22.171 | 7.260 |
YES | 9.541 | 124.775 | 7.431 |
Polarization Enhancement | Turbidity/NTU | EME | Contrast | Entropy |
---|---|---|---|---|
NO | 1.70 | 8.026 | 5.978 | 6.084 |
YES | 1.70 | 135.374 | 571.302 | 7.032 |
NO | 3.89 | 6.913 | 3.250 | 4.771 |
YES | 3.89 | 28.690 | 28.901 | 5.094 |
NO | 5.41 | 1.517 | 0.172 | 4.511 |
YES | 5.41 | 4.421 | 140.437 | 6.204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Liu, P.; He, W.; Luo, D.; Tan, Y.; Chen, L.; Wang, J.; Zhao, Q.; Jiao, G.; Chen, W. Polarization-Enhanced Underwater Laser Range-Gated Imaging for Subaquatic Applications. Sensors 2024, 24, 6681. https://doi.org/10.3390/s24206681
Chen S, Liu P, He W, Luo D, Tan Y, Chen L, Wang J, Zhao Q, Jiao G, Chen W. Polarization-Enhanced Underwater Laser Range-Gated Imaging for Subaquatic Applications. Sensors. 2024; 24(20):6681. https://doi.org/10.3390/s24206681
Chicago/Turabian StyleChen, Shuaibao, Peng Liu, Wei He, Dong Luo, Yuguang Tan, Liangpei Chen, Jue Wang, Qi Zhao, Guohua Jiao, and Wei Chen. 2024. "Polarization-Enhanced Underwater Laser Range-Gated Imaging for Subaquatic Applications" Sensors 24, no. 20: 6681. https://doi.org/10.3390/s24206681
APA StyleChen, S., Liu, P., He, W., Luo, D., Tan, Y., Chen, L., Wang, J., Zhao, Q., Jiao, G., & Chen, W. (2024). Polarization-Enhanced Underwater Laser Range-Gated Imaging for Subaquatic Applications. Sensors, 24(20), 6681. https://doi.org/10.3390/s24206681