A Survey on the Design of Virtual Reality Interaction Interfaces
<p>Human-computer interaction in VR.</p> "> Figure 2
<p>Flow diagram of literature search.</p> "> Figure 3
<p>Numbers of publications on VR interaction interface design (from 2011 to 2023).</p> "> Figure 4
<p>The primary subject distribution in the literature.</p> "> Figure 5
<p>The high frequency keywords in the literature.</p> "> Figure 6
<p>Research topic distribution in the literature.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
Literature Review and Selection Process
3. Results and Analysis
The Current Development of VR Interaction Interface Design Research
4. Discussion
4.1. VR Interactive Interface Design Principles
- (1)
- Applying cognitive load theory to minimize extraneous cognitive load and enhance germane load, thereby optimizing interface design for reduced cognitive demands during virtual environment interpretation. Adhering to design principles like proximity and consistency can improve users’ understanding and utilization of VR interfaces.
- (2)
- Emphasizing user engagement and emotional investment in VR experiences by stimulating interest, curiosity, and immersion through storytelling, gamification, and social interactions. Multisensory interactions that combine visual, auditory, and tactile modalities can further enhance engagement and immersion.
- (3)
- Focusing on user perception and interaction within the virtual world to enhance satisfaction through intuitive controls, feedback, and interactions. Personalization and adaptive design adjustments based on user behavior, preferences, and capabilities can lead to more satisfying VR experiences.
4.2. VR Interactive Interface Evaluation Methods
5. Conclusions and Perspectives
- (1)
- A multi-channel VR interaction interface that conveys information in a manner consistent with human cognitive and emotional processes can enhance immersion and interaction depth, leading to more intuitive and satisfying user experiences and thus fostering innovation in VR interaction interface design.
- (2)
- Focusing on the diverse needs of users is not only crucial for enhancing the inclusiveness of VR but also aligns with Sustainable Development Goal (SDG) 10, which aims to reduce inequalities. By providing inclusive VR interaction interfaces, we can reduce disparities in technology usage and promote equitable access to information and resources.
- (3)
- Interdisciplinary approaches that blend psychology, design, and technology are crucial for driving innovation in VR interaction interfaces. The integration of these fields helps to create personalized and adaptive interfaces, which can enhance user engagement and satisfaction.
Author Contributions
Funding
Conflicts of Interest
References
- Rebelo, F.; Noriega, P.; Duarte, E.; Soares, M. Using virtual reality to assess user experience. Hum. Factors 2012, 54, 964–982. [Google Scholar] [CrossRef] [PubMed]
- Burdea, G.C.; Coiffet, P. Virtual Reality Technology; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Bekele, M.K.; Pierdicca, R.; Frontoni, E.; Malinverni, E.S.; Gain, J. A survey of augmented, virtual, and mixed reality for cultural heritage. ACM J. Comput. Cult. Herit. 2018, 11, 1–36. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chen, M.-X. Effects of the design of overview maps on three-dimensional virtual environment interfaces. Sensors 2020, 20, 4605. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Meng, Q.; Han, L.; Pan, Z. Design and implementation of the personalized virtual fitness system. J. Image Graph. 2015, 20, 953–962. [Google Scholar]
- Sudár, A.; Csapó, A.B. Descriptive markers for the cognitive profiling of desktop 3D spaces. Electronics 2023, 12, 448. [Google Scholar] [CrossRef]
- Andujar, C.; Chica, A.; Brunet, P. User-interface design for the Ripoll Monastery exhibition at the National Art Museum of Catalonia. Comput. Graph. 2012, 36, 28–37. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Chen, Y. An experimental investigation of menu selection for immersive virtual environments: Fixed versus handheld menus. Virtual Real. 2021, 25, 409–419. [Google Scholar] [CrossRef]
- Grabowski, A. Practical skills training in enclosure fires: An experimental study with cadets and firefighters using CAVE and HMD-based virtual training simulators. Fire Saf. J. 2021, 125, 103440. [Google Scholar] [CrossRef]
- Jeong, S.; Jung, E.S.; Im, Y. Ergonomic evaluation of interaction techniques and 3D menus for the practical design of 3D stereoscopic displays. Int. J. Ind. Ergon. 2016, 53, 205–218. [Google Scholar] [CrossRef]
- Zhang, L.; He, W.; Bai, H.; Zou, Q.; Wang, S.; Billinghurst, M. A hybrid 2D-3D tangible interface combining a smartphone and controller for virtual reality. Virtual Real. 2023, 27, 1273–1291. [Google Scholar] [CrossRef]
- Nezami, F.N.; Wachter, M.A.; Maleki, N.; Spaniol, P.; Kuhne, L.M.; Haas, A.; Pingel, J.M.; Tiemann, L.; Nienhaus, F.; Keller, L.; et al. Westdrive X LoopAR: An open-access virtual reality project in Unity for evaluating user interaction methods during takeover requests. Sensors 2021, 21, 1879. [Google Scholar] [CrossRef]
- Molina, G.; Gimeno, J.; Portalés, C.; Casas, S. A comparative analysis of two immersive virtual reality systems in the integration and visualization of natural hand interaction. Multimed. Tools Appl. 2022, 81, 7733–7758. [Google Scholar] [CrossRef]
- Lee, Y.S.; Sohn, B.S. Immersive gesture interfaces for navigation of 3D maps in HMD-based mobile virtual environments. Mob. Inf. Syst. 2018, 2018, 2585797. [Google Scholar] [CrossRef]
- Lukacevic, F.; Skec, S.; Perisic, M.M.; Horvat, N.; Storga, M. Spatial perception of 3D CAD model dimensions and affordances in virtual environments. IEEE Access 2020, 8, 174587–174604. [Google Scholar] [CrossRef]
- Vosinakis, S.; Koutsabasis, P. Evaluation of visual feedback techniques for virtual grasping with bare hands using Leap Motion and Oculus Rift. Virtual Real. 2018, 22, 47–62. [Google Scholar] [CrossRef]
- Wagner, J.A.; Stuerzlinger, W.; Nedel, L. Evaluating an immersive space-time cube geovisualization for intuitive trajectory data exploration. IEEE Trans. Visual. Comput. Graph. 2020, 26, 514–524. [Google Scholar]
- Coelho, H.; Melo, M.; Barbosa, L.; Martins, J.; Teixeira, M.S.; Bessa, M. Authoring tools for creating 360 multisensory videos-Evaluation of different interfaces. Expert Syst. 2019, 38, e12418. [Google Scholar] [CrossRef]
- Fengjun, Z.; Guozhong, D.; Xiaolan, P. A survey on human-computer interaction in virtual reality. Sci. China Ser. F-Inf. Sci. 2016, 46, 1711–1736. [Google Scholar]
- Huang, J.; Han, D.; Chen, Y.; Tian, F.; Wang, H.; Dai, G. A survey on human-computer interaction in mixed reality. J. Comput.-Aided Des. Comput. Graph. 2016, 28, 869–880. [Google Scholar]
- Bowman, D.A.; Kruijff, E.; LaViola, J.J.; Poupyrev, I. 3D User Interfaces: Theory and Practice; Addison Wesley Longman Publishing Co., Inc.: Redwood City, CA, USA, 2004. [Google Scholar]
- Ziadeh, H.; Gulyas, D.; Nielsen, L.D.; Lehmann, S.; Nielsen, T.B.; Kjeldsen, T.K.K.; Hougaard, B.I.; Jochumsen, M.; Knoche, H. “Mine works better”: Examining the influence of embodiment in virtual reality on the sense of agency during a binary motor imagery task with a brain-computer interface. Front. Psychol. 2021, 12, 806424. [Google Scholar] [CrossRef]
- Kim, M.; Lee, J.; Jeon, C.; Kim, J. A study on interaction of gaze pointer-based user interface in mobile virtual reality environment. Symmetry 2017, 9, 189. [Google Scholar] [CrossRef]
- Viciana-Abad, R.; Reyes-Lecuona, A.; Rosa-Pujazon, A.; Perez-Lorenzo, J.M. The influence of different sensory cues as selection feedback and co-location in presence and task performance. Multimed. Tools Appl. 2014, 68, 623–639. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Li, P.; Yao, S.; Liu, H. Multiple perspectives integration for virtual reality-aided assemblability assessment in narrow assembly spaces. Int. J. Adv. Manuf. Technol. 2022, 119, 2495–2508. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, J.I.; Lee, J. VR Color picker: Three-dimensional color selection interfaces. IEEE Access 2022, 10, 65809–65824. [Google Scholar] [CrossRef]
- Woodworth, J.W.; Borst, C.W. Pointing in the third-person: An exploration of human motion and visual pointing aids for 3D virtual mirrors. Virtual Real. 2023, 27, 2099–2116. [Google Scholar] [CrossRef]
- Jia, D.W.; Bhatti, A.; Nahavandi, S.; Horan, B. Human performance measures for interactive haptic-audio-visual interfaces. IEEE Trans. Haptic 2013, 6, 46–57. [Google Scholar]
- Alkemade, R.; Verbeek, F.J.; Lukosch, S.G. On the efficiency of a VR hand gesture-based interface for 3D object manipulations in conceptual design. Int. J. Hum.-Comput. Interact. 2017, 33, 882–901. [Google Scholar] [CrossRef]
- Lahav, O. Virtual reality systems as an orientation aid for people who are blind to acquire new spatial information. Sensors 2022, 22, 1307. [Google Scholar] [CrossRef] [PubMed]
- Sorger, J.; Arleo, A.; Kan, P.; Knecht, W.; Waldner, M. Egocentric network exploration for immersive analytics. Comput. Graph. Forum 2021, 40, 241–252. [Google Scholar] [CrossRef]
- Sun, C.; Hu, W.; Xu, D. Navigation modes, operation methods, observation scales and background options in UI design for high learning performance in VR-based architectural applications. J. Comput. Des. Eng. 2019, 6, 189–196. [Google Scholar] [CrossRef]
- de Freitas, B.L.; da Silva, T.D.; Crocetta, T.B.; Massetti, T.; de Araujo, L.V.; Coe, S.; Dawes, H.; Caromano, F.A.; Monteiro, C.B.D. Analysis of different device interactions in a virtual reality task in individuals with duchenne muscular dystrophy-A randomized controlled trial. Front. Neurol. 2019, 10, 00024. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Huang, T.; Liang, S. Smart home R&D system based on virtual reality. J. Intell. Fuzzy Syst. 2021, 40, 3045–3054. [Google Scholar]
- Kim, W.; Xiong, S. Pseudo-haptic button for improving user experience of mid-air interaction in VR. Int. J. Hum. Comput. Stud. 2022, 168, 102907. [Google Scholar] [CrossRef]
- Otaran, A.; Farkhatdinov, I. Haptic ankle platform for interactive walking in virtual reality. IEEE Trans. Visual. Comput. Graph. 2022, 28, 3974–3985. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.C.S.; Ribeiro, J.M. Tangible VR book: Exploring the design space of marker-based tangible interfaces for virtual reality. Appl. Sci. 2021, 11, 1367. [Google Scholar] [CrossRef]
- Butnariu, S.; Duguleana, M.; Brondi, R.; Girbacia, F.; Postelnicu, C.; Carrozzino, M. An interactive haptic system for experiencing traditional archery. Acta Polytech. Hung. 2018, 15, 185–208. [Google Scholar]
- Yang, T.H.; Son, H.; Byeon, S.; Gil, H.; Hwang, I.; Jo, G.; Choi, S.; Kim, S.Y.; Kim, J.R. Magnetorheological fluid haptic shoes for walking in VR. IEEE Trans. Haptic 2021, 14, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Ashour, R.; Sunda-Meya, A. Haptic and virtual reality based shared control for MAV. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2337–2346. [Google Scholar] [CrossRef]
- Gosselin, F.; Bouchigny, S.; Megard, C.; Taha, F.; Delcampe, P.; d’Hauthuille, C. Haptic systems for training sensorimotor skills: A use case in surgery. Robot. Auton. Syst. 2013, 61, 380–389. [Google Scholar] [CrossRef]
- Ceccacci, S.; Generosi, A.; Leopardi, A.; Mengoni, M.; Mandorli, A.F. The role of haptic feedback and gamification in virtual museum systems. ACM J. Comput. Cult. Herit. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Jin, S.A.A. The moderating role of sensation seeking tendency in robotic haptic interfaces. Behav. Inform. Technol. 2013, 32, 862–873. [Google Scholar] [CrossRef]
- Carlson, P.; Vance, J.M.; Berg, M. An evaluation of asymmetric interfaces for bimanual virtual assembly with haptics. Virtual Real. 2016, 20, 193–201. [Google Scholar] [CrossRef]
- Novak, D.; Mihelj, M.; Munih, M. Psychophysiological responses to different levels of cognitive and physical workload in haptic interaction. Robotica 2011, 29, 367–374. [Google Scholar] [CrossRef]
- Reynaert, V.; Rekik, Y.; Berthaut, F.; Grisoni, L. The effect of hands synchronicity on users perceived arms Fatigue in Virtual reality environment. Int. J. Hum. Comput. Stud. 2023, 178, 103092. [Google Scholar] [CrossRef]
- Park, K.B.; Lee, J.Y. New design and comparative analysis of smartwatch metaphor-based hand gestures for 3D navigation in mobile virtual reality. Multimed. Tools Appl. 2019, 78, 6211–6231. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Song, F.; Yu, D.; Bo, Z.; Zhang, Z. The effect of audiovisual spatial design on user experience of bare-hand interaction in VR. Int. J. Hum.-Comput. Interact. 2023, 40, 2796–2807. [Google Scholar] [CrossRef]
- De Paolis, L.T.; De Luca, V. The effects of touchless interaction on usability and sense of presence in a virtual environment. Virtual Real. 2022, 26, 1551–1571. [Google Scholar] [CrossRef]
- Yeh, S.C.; Wu, E.H.K.; Lee, Y.R.; Vaitheeshwari, R.; Chang, C.W. User experience of virtual-reality interactive interfaces: A comparison between hand gesture recognition and joystick control for XRSPACE MANOVA. Appl. Sci. 2022, 12, 12230. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, S.S.; Bai, X.L.; Billinghurst, M.; He, W.P.; Sun, M.M.; Chen, Y.X.; Lv, H.; Ji, H.Y. 2.5DHANDS: A gesture-based MR remote collaborative platform. Int. J. Adv. Manuf. Technol. 2019, 102, 1339–1353. [Google Scholar] [CrossRef]
- Zhao, J.B.; Allison, R.S. Comparing head gesture, hand gesture and gamepad interfaces for answering Yes/No questions in virtual environments. Virtual Real. 2020, 24, 515–524. [Google Scholar] [CrossRef]
- Mashal, S.; Kranz, M.; Hoelzl, G. Do you feel like flying? A study of flying perception in virtual reality for future game development. IEEE Comput. Graph. Appl. 2020, 40, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, S.; Blanco, R.; Uribe-Quevedo, A.; Penuela, L.; Rojas, D.; Kapralos, B. Development and evaluation of two posture-tracking user interfaces for occupational health care. Adv. Mech. Eng. 2018, 10, 1687814018769489. [Google Scholar] [CrossRef]
- Zari, G.; Condino, S.; Cutolo, F.; Ferrari, V. Magic Leap 1 versus Microsoft HoloLens 2 for the visualization of 3D content obtained from radiological images. Sensors 2023, 23, 3040. [Google Scholar] [CrossRef]
- Lu, F.; Nanjappan, V.; Parsons, P.; Yu, L.; Liang, H.-N. Effect of display platforms on spatial knowledge acquisition and engagement: An evaluation with 3D geometry visualizations. J. Vis. 2022, 26, 667–686. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Han, L. Research on Great Wall section protection and user VR experience innovation based on GIS data visualization. Soft Comput. 2023, 27, 9041–9050. [Google Scholar]
- Zhang, H.; Zhu, L.; Zhang, Q.; Wang, Y.; Song, A. Online view enhancement for exploration inside medical volumetric data using virtual reality. Comput. Biol. Med. 2023, 163, 107217. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, J. Large relics scenario-based visualization using head-mounted displays. Comput. Intell. Neurosci. 2021, 2021, 2813819. [Google Scholar] [CrossRef]
- Bardella, F.; Rodrigues, A.M.; Neto, R.M.L. Crystalwalk: An educational interactive software for synthesis and visualization of crystal structures. J. Mater. Educ. 2019, 41, 157–180. [Google Scholar]
- Sun, H.; Lv, J.; Cun, W. VR system information visualization model cognition. J. Graph. 2018, 39, 317–326. [Google Scholar]
- Zwolinski, G.; Kaminska, D.; Laska-Lesniewicz, A.; Haamer, R.E.; Vairinhos, M.; Raposo, R.; Urem, F.; Reisinho, P. Extended reality in education and training: Case studies in management education. Electronics 2022, 11, 336. [Google Scholar] [CrossRef]
- Cho, Y.; Park, M.; Kim, J. XAVE: Cross-platform based asymmetric virtual environment for immersive content. IEEE Access 2023, 11, 71890–71904. [Google Scholar] [CrossRef]
- Zhu, Y.; Lou, Z.; Wu, T.; Wang, J. Research on system of virtual-reality fusion and inquiry-based learning. J. Syst. Simul. 2023, 35, 82–94. [Google Scholar]
- Wang, P.; Bai, X.L.; Billinghurst, M.; Zhang, S.S.; Han, D.C.; Sun, M.M.; Wang, Z.; Lv, H.; Han, S. Haptic feedback helps me? A VR-SAR remote collaborative system with tangible interaction. Int. J. Hum.-Comput. Interact. 2020, 36, 1242–1257. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, Y.S. An adaptive UI based on user-satisfaction prediction in mixed reality. Appl. Sci. 2022, 12, 4559. [Google Scholar] [CrossRef]
- Shankhwar, K.; Smith, S. An interactive extended reality-based tutorial system for fundamental manual metal arc welding training. Virtual Real. 2022, 26, 1173–1192. [Google Scholar] [CrossRef]
- Cong, X.; Li, T. Design and development of virtual medical system interface based on VR-AR hybrid technology. Comput. Math. Methods. Med. 2020, 2020, 7108147. [Google Scholar] [CrossRef] [PubMed]
- Tsao, Y.-C.; Shu, C.-C.; Lan, T.-S. Development of a reminiscence therapy system for the elderly using the integration of virtual reality and augmented reality. Sustainability 2019, 11, 4792. [Google Scholar] [CrossRef]
- Anton, D.; Kurillo, G.; Bajcsy, R. User experience and interaction performance in 2D/3D telecollaboration. Future Gener. Comput. Syst. 2018, 82, 77–88. [Google Scholar] [CrossRef]
- Lo, C.-M.; Wang, J.-H.; Wang, H.-W. Virtual reality human-robot interaction technology acceptance model for learning direct current and alternating current. J. Supercomput. 2022, 78, 15314–15337. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Q.; Johnson-Glenberg, M.C.; Han, M.; Ma, J.; Ba, S.; Wu, L. Promoting musical instrument learning in virtual reality environment: Effects of embodiment and visual cues. Comput. Educ. 2023, 198, 104764. [Google Scholar] [CrossRef]
- Hulusic, V.; Gusia, L.; Luci, N.; Smith, M. Tangible user interfaces for enhancing user experience of virtual reality cultural heritage applications for utilization in educational environment. ACM J. Comput. Cult. Herit. 2023, 16, 1–24. [Google Scholar] [CrossRef]
- Al Hakim, V.G.; Yang, S.-H.; Liyanawatta, M.; Wang, J.-H.; Chen, G.-D. Robots in situated learning classrooms with immediate feedback mechanisms to improve students’ learning performance. Comput. Educ. 2022, 182, 104483. [Google Scholar] [CrossRef]
- Roldan, J.J.; Pena-Tapia, E.; Martin-Barrio, A.; Olivares-Mendez, M.A.; Del Cerro, J.; Barrientos, A. Multi-robot interfaces and operator situational awareness: Study of the impact of immersion and prediction. Sensors 2017, 17, 1720. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Li, L.; Lu, Y.; Xiao, L.; Zong, X.; Tu, C.; Meng, F.; Tang, Y.; Guo, D. Research on holographic visualization verification platform for construction machinery based on mixed reality technology. Appl. Sci. 2023, 13, 3692. [Google Scholar] [CrossRef]
- Lee, H.Y.; Zhou, P.; Duan, A.Q.; Wang, J.L.; Wu, V.C.; Navarro-Alarcon, D. A multisensor interface to improve the learning experience in arc welding taining tasks. IEEE Trans. Hum.-Mach. Syst. 2023, 53, 619–628. [Google Scholar] [CrossRef]
- Prati, E.; Villani, V.; Peruzzini, M.; Sabattini, L. An approach based on VR to design industrial human-robot collaborative workstations. Appl. Sci. 2021, 11, 11773. [Google Scholar] [CrossRef]
- de Lotbiniere-Bassett, M.; Batista, A.V.; Lai, C.; El Chemaly, T.; Dort, J.; Blevins, N.; Lui, J. The user experience design of a novel microscope within SurgiSim, a virtual reality surgical simulator. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 85–93. [Google Scholar] [CrossRef]
- Vourvopoulos, A.; Badia, S.B.I. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: A within-subject analysis. J. Neuroeng. Rehabil. 2016, 13, 69. [Google Scholar] [CrossRef]
- Hinricher, N.; Schröer, C.; Backhaus, C. Design of control elements in virtual reality-investigation of factors influencing operating efficiency, user experience, presence, and workload. Appl. Sci. 2023, 13, 8668. [Google Scholar] [CrossRef]
- Weidner, F.; Maier, J.E.; Broll, W. Eating, smelling, and seeing: Investigating multisensory integration and (in)congruent stimuli while eating in VR. IEEE Trans. Visual. Comput. Graph. 2023, 29, 2423–2433. [Google Scholar] [CrossRef]
- Han, D.I.D.; Melissen, F.; Haggis-Burridge, M. Immersive experience framework: A Delphi approach. Behav. Inform. Technol. 2023, 43, 623–639. [Google Scholar] [CrossRef]
- Zhang, W.; Min, W. Characteristics of virtual user interface for teenagers. Packag. Eng. 2018, 39, 138–145. [Google Scholar]
- Li, X.; Zhao, F.; Zhang, S.; Zhang, L.; Xu, M. Research on the design and application of VR/AR learning experience. China Educ. Technol. 2018, 3, 10–18. [Google Scholar]
- Qi, B.; Zhang, W.; Zhu, X.; Zhang, M.; Li, Q. Research on multi-mode interaction model and influencing factors for digital collections. Libr. Inf. Serv. 2023, 67, 90–98. [Google Scholar]
- Lehrer, N.; Attygalle, S.; Wolf, S.L.; Rikakis, T. Exploring the bases for a mixed reality stroke rehabilitation system, Part I: A unified approach for representing action, quantitative evaluation, and interactive feedback. J. Neuroeng. Rehabil. 2011, 8, 54. [Google Scholar] [CrossRef]
- Jacob, R.J.K.; Girouard, A.; Hirshfield, L.M.; Horn, M.S.; Shaer, O.; Solovey, E.T.; Zigelbaum, J. Reality-based interaction: A framework for post-WIMP interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; Association for Computing Machinery: Florence, Italy, 2008; pp. 201–210. [Google Scholar]
- Wang, Y.; Zhai, G.; Chen, S.; Min, X.; Gao, Z.; Song, X. Assessment of eye fatigue caused by head-mounted displays using eye-tracking. Biomed. Eng. Online 2019, 18, 111. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, J.; Liu, Y.; Wang, Y. User experience design of VR-AR hybrid mobile browsing system based on mental model. Chin. J. Comput. 2015, 38, 408–422. [Google Scholar]
- Sawyer, B.; Wolfe, B.; Dobres, J.; Chahine, N.; Mehler, B.; Reimer, B. Glanceable, legible typography over complex backgrounds. Ergonomics 2020, 63, 864–883. [Google Scholar] [CrossRef]
- Wright, V.; Kefalidou, G. Can you hear the colour? Designing virtual worlds for synaesthetic and multimodal experiences. Interact. Comput. 2022, 33, 458–479. [Google Scholar] [CrossRef]
- Quesnel, D.; Riecke, B.E. Are you awed yet? How virtual reality gives us awe and goose bumps. Front. Psychol. 2018, 9, 2158. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, G.; Wang, D.; Tao, B. Evaluation and empirical study of virtual reality interactive reading experience from the perspective of human-computer interaction. Libr. Inf. Serv. 2020, 64, 54–66. [Google Scholar]
- Gao, M.Y.Z.; Boehm-Davis, D.A. Development of a customizable interactions questionnaire (CIQ) for evaluating interactions with objects in augmented/virtual reality. Virtual Real. 2023, 27, 699–716. [Google Scholar] [CrossRef]
- Su, K.-W.; Chen, S.-C.; Lin, P.-H.; Hsieh, C.-I. Evaluating the user interface and experience of VR in the electronic commerce environment: A hybrid approach. Virtual Real. 2020, 24, 241–254. [Google Scholar] [CrossRef]
- Wang, J.; Lindeman, R. Coordinated hybrid virtual environments: Seamless interaction contexts for effective virtual reality. Comput. Graph. 2015, 48, 71–83. [Google Scholar] [CrossRef]
- Benlamine, M.S.; Dufresne, A.; Beauchamp, M.H.; Frasson, C. BARGAIN: Behavioral affective rule-based games adaptation interface-towards emotionally intelligent games: Application on a virtual reality environment for socio-moral development. User Model. User-Adapt. Interact. 2021, 31, 287–321. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, Y.; Hansen, P.; Geng, W.; Li, X. Cross-objects user interfaces for video interaction in virtual reality museum context. Multimed. Tools Appl. 2018, 77, 29013–29041. [Google Scholar] [CrossRef]
- Roupe, M.; Bosch-Sijtsema, P.; Johansson, M. Interactive navigation interface for virtual reality using the human body. Comput. Environ. Urban. Syst. 2014, 43, 42–50. [Google Scholar] [CrossRef]
- Shafer, D.M. The Effects of interaction fidelity on game experience in virtual reality. Psychol. Pop. Media 2021, 10, 457–466. [Google Scholar] [CrossRef]
- Lou, X.; Li, X.; Hansen, P.; Du, P. Hand-adaptive user interface: Improved gestural interaction in virtual reality. Virtual Real. 2021, 25, 367–382. [Google Scholar] [CrossRef]
Journal | Number | Publisher City |
---|---|---|
1. Virtual Reality | 25 | London, UK |
2. IEEE Transactions on Visualization and Computer Graphics | 20 | Los Alamitos, NM, USA |
3. Applied Sciences—Basel | 17 | Basel, Switzerland |
4. IEEE Access | 15 | Piscataway, NJ, USA |
5. Multimedia Tools and Applications | 15 | Dordrecht, Netherlands |
6. Computer Animation and Virtual Worlds | 12 | Los Alamitos, NM, USA |
7. Computers & Education | 10 | Oxford, UK |
8. Packaging Engineering | 10 | Chongqing, China |
9. Symmetry-Basel | 9 | Basel, Switzerland |
10. International Journal of Human-Computer Studies | 9 | London, UK |
11. Computers & Graphics-UK | 9 | Oxford, UK |
12. Sustainability | 7 | Basel, Switzerland |
13. Research and Exploration in Laboratory | 6 | Shanghai, China |
14. Sensors | 5 | Basel, Switzerland |
15. IEEE Transactions on Haptics | 5 | Los Alamitos, NM, USA |
16. Journal of Neuroengineering and Rehabilitation | 5 | London, UK |
17. Frontiers in Psychology | 4 | Lausanne, Switzerland |
18. Computers in Human Behavior | 4 | Oxford, UK |
19. Ship Science and Technology | 4 | Beijing, China |
20. Behaviour & Information Technology | 4 | Abingdon, UK |
Evaluation Content | Type | Metrics |
---|---|---|
Task performance | objective | Task completion time, accuracy rate, number of errors, pause time, number of help requests, etc. |
Physiological measures | objective | Blood pressure, heart rate, body temperature, respiratory rate, EEG, EOG, ECG, GSR, EBR, etc. |
Environmental perception | objective | Accuracy in judging spatial attributes and relationships, angle deviation, and path deviation |
Feelings and attitudes | subjective | Positive aspects: usability, satisfaction, preference, presence, agency, ease of use, utility, interactivity, realism, enjoyment, learnability, efficiency, accuracy, ownership, and embodiment. Negative aspects: simulation sickness, task load, stress, fatigue, discomfort, visual fatigue, and frustration. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.-X.; Hu, H.; Yao, R.; Qiu, L.; Li, D. A Survey on the Design of Virtual Reality Interaction Interfaces. Sensors 2024, 24, 6204. https://doi.org/10.3390/s24196204
Chen M-X, Hu H, Yao R, Qiu L, Li D. A Survey on the Design of Virtual Reality Interaction Interfaces. Sensors. 2024; 24(19):6204. https://doi.org/10.3390/s24196204
Chicago/Turabian StyleChen, Meng-Xi, Huicong Hu, Ruiqi Yao, Longhu Qiu, and Dongxu Li. 2024. "A Survey on the Design of Virtual Reality Interaction Interfaces" Sensors 24, no. 19: 6204. https://doi.org/10.3390/s24196204
APA StyleChen, M. -X., Hu, H., Yao, R., Qiu, L., & Li, D. (2024). A Survey on the Design of Virtual Reality Interaction Interfaces. Sensors, 24(19), 6204. https://doi.org/10.3390/s24196204