Multilayer Fused Correntropy Reprsenstation for Fault Diagnosis of Mechanical Equipment
<p>Flowchart of fault diagnosis based on the proposed MFCE combined with SVM.</p> "> Figure 2
<p>Fault simulation test bench: (<b>a</b>) CWRU dataset. (<b>b</b>) PU dataset. (<b>c</b>) SQ dataset. (<b>d</b>) Gearbox dataset.</p> "> Figure 3
<p>Comparison results of all methods.</p> "> Figure 4
<p>Confusion matrices of MFCE under different SNRs on the Gearbox dataset.</p> "> Figure 5
<p>Accuracies of MFCE with different wavelet basis functions in the one-shot setting.</p> ">
Abstract
:1. Introduction
- A new fault diagnosis method is proposed using MFCE combined with an SVM for mechanical equipment under noise interference scenarios.
- An MFCE is designed to extract representative features from signals when only a small number of samples are available.
2. Methodology
2.1. Data Expansion Based on WPD
2.2. Between-Components Correntropy Matrices Construction and Feature Fusion
2.3. Fault Classification Based on SVM
3. Case Studies
3.1. Dataset Introduction
3.1.1. Case 1: CWRU Dataset
3.1.2. Case 2: PU Dataset
3.1.3. Case 3: SQ Dataset
3.1.4. Case 4: Gearbox Dataset
3.2. Experimental Results and Discussion
3.3. Noise Immunity Robustness Analysis
3.4. Parameter Analysis
3.5. Ablation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Q.; Xue, L.; He, J.; Jia, S.; Li, Y. A rotating machinery fault diagnosis method based on dynamic graph convolution network and hard threshold denoising. Sensors 2024, 24, 4887. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Ye, Q. A bearing fault diagnosis method based on wavelet packet transform and convolutional neural network optimized by simulated annealing algorithm. Sensors 2022, 22, 1410. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Jia, B. Ship propulsion shafting bearing fault diagnosis based on holographic SDP similarity visual recognition. Chin. J. Ship Res. 2022, 17, 88–95. [Google Scholar]
- Wang, L.; Cao, H.; Wei, L. Study on fault diagnosis of marine main engine’s online imbalanced data. Chin. J. Ship Res. 2023, 18, 269–275. [Google Scholar]
- He, C.; Shi, H.; Si, J.; Li, Y. Physics-informed interpretable wavelet weight initialization and balanced dynamic adaptive threshold for intelligent fault diagnosis of rolling bearings. J. Manuf. Syst. 2023, 70, 579–592. [Google Scholar] [CrossRef]
- Wang, R.; Chen, H.; Guan, C. Fault diagnosis of marine diesel engines based on graph convolutional network under unbalanced datasets. Chin. J. Ship Res. 2022, 17, 289–300. [Google Scholar]
- Su, J.; Song, H.; Song, F.; Zhang, G. Fault diagnosis of steam power system based on convolutional neural network. Chin. J. Ship Res. 2022, 17, 96–102. [Google Scholar]
- Hu, K.; Cheng, Y.; Wu, J.; Zhu, H.; Shao, X. Deep bidirectional recurrent neural networks ensemble for remaining useful life prediction of aircraft engine. IEEE Trans. Cybern. 2023, 5, 2531–2543. [Google Scholar] [CrossRef]
- Han, S.; Shao, H.; Cheng, J.; Yang, X.; Cai, B. Convformer-NSE: A novel end-to-end gearbox fault diagnosis framework under heavy noise using joint global and local information. IEEE-ASME Trans. Mechatron. 2023, 28, 340–349. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, W.; Guo, F.; Liu, W.; Shi, X. Wavelet packet decomposition-based multiscale CNN for fault diagnosis of wind turbine gearbox. IEEE Trans. Cybern. 2023, 53, 443–453. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, T.; Qian, Q.; Mao, Y. Large model for rotating machine fault diagnosis based on a dense connection network with depthwise separable. IEEE Trans. Instrum. Meas. 2024, 73, 3520512. [Google Scholar] [CrossRef]
- Yan, S.; Shao, H.; Wang, J.; Zheng, X.; Liu, B. LiConvFormer: A lightweight fault diagnosis framework using separable multiscale convolution and broadcast self-attention. Expert Syst. Appl. 2024, 237, 121338. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Hu, N.; Cheng, Z.; Shao, H.; Cheng, J. Maximum margin Riemannian manifold-based hyperdisk for fault diagnosis of roller bearing with multi-channel fusion covariance matrix. Adv. Eng. Inform. 2022, 51, 101513. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, M.; Chen, H.; Xie, P.; Zhou, Y. Slow feature analysis-aided detection and diagnosis of incipient faults for running gear systems of high-speed trains. ISA Trans. 2022, 125, 415–425. [Google Scholar] [CrossRef]
- Liao, L.; Yang, D.; Li, X.; Jiang, J.; Wu, T. Fault diagnosis of lithium-ion batteries based on wavelet packet decomposition and Manhattan average distance. Int. J. Green Energy 2024, 21, 2828–2842. [Google Scholar] [CrossRef]
- Li, X.; Zhong, X.; Shao, H.; Han, T.; Shen, C. Multi-sensor gearbox fault diagnosis by using feature-fusion covariance matrix and multi-Riemannian kernel ridge regression. Reliab. Eng. Syst. Saf. 2021, 216, 108018. [Google Scholar] [CrossRef]
- Su, Z.; Wang, F.; Xiao, H.; Yu, H.; Dong, S. A fault diagnosis model based on singular value manifold features, optimized SVMs and multi-sensor information fusion. Meas. Sci. Technol. 2020, 31, 095002. [Google Scholar] [CrossRef]
- Chai, Z.; Zhao, C. Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification. IEEE Trans. Ind. Inform. 2020, 16, 54–66. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, K.; Wu, J.; Deng, C.; Wang, Y. Residual shrinkage transformer relation network for intelligent fault detection of industrial robot with zero-fault samples. Knowl.-Based Syst. 2023, 268, 110452. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, J.; Zhu, H.; Gao, L. Multi-model fusion health assessment for multistate industrial robot via fuzzy deep residual shrinkage network and versatile cluster. IEEE Trans. Fuzzy Syst. 2024, 32, 4735–4746. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Q.; Chen, H.; Zhao, J.; Yao, L.; Zhang, J.; Chu, F. A high-accuracy intelligent fault diagnosis method for aero-engine bearings with limited samples. Comput. Ind. 2024, 159–160, 104099. [Google Scholar] [CrossRef]
- Yang, C.; Gabbouj, M.; Jia, M.; Li, Z. Hierarchical symbol transition entropy: A novel feature extractor for machinery health monitoring. IEEE Trans. Ind. Inform. 2022, 18, 6131–6141. [Google Scholar] [CrossRef]
- Feng, Z.; Wu, Q.; Yang, S. Temporal local correntropy representation for fault diagnosis of machines. IEEE Trans. Ind. Inform. 2023, 19, 11868–11877. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, F.; Ma, T. Wavelet packet decomposition with motif patterns for rolling bearing fault diagnosis under variable working loads. J. Vib. Control 2024. [Google Scholar] [CrossRef]
- Santamaria, I.; Pokharel, P.P.; Principe, C.P. Generalized correlation function: Definition, properties, and application to blind equalization. IEEE Trans. Signal Process. 2006, 54, 2187–2197. [Google Scholar] [CrossRef]
- Case Western Reserve University Bearing Data Center. 2012. Available online: https://engineering.case.edu/bearingdatacenter/download-data-file (accessed on 5 May 2012).
- Lessmeier, C.; Kimotho, J.K.; Zimmer, D.; Sextro, W. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification. In Proceedings of the European Conference on the Prognostics and Health Management Society, Bilbao, Spain, 5–8 July 2016. [Google Scholar]
- Liu, S.; Chen, J.; He, S.; Shi, Z.; Zhou, Z. Few-shot learning under domain shift: Attentional contrastive calibrated transformer of time series for fault diagnosis under sharp speed variation. Mech. Syst. Signal Process. 2023, 189, 110071. [Google Scholar] [CrossRef]
- Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans. Ind. Inform. 2019, 15, 2446–2455. [Google Scholar] [CrossRef]
- Dempster, A.; Schmidt, D.F.; Webb, G. MINIROCKET: A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 248–257. [Google Scholar]
- Vu, M.; Nguyen, V.; Tran, T.; Pham, V.; Lo, M. Few-shot bearing fault diagnosis via ensembling transformer-based model with Mahalanobis distance metric learning from multiscale features. IEEE Trans. Instrum. Meas. 2024, 73, 2513618. [Google Scholar] [CrossRef]
- Pu, Z.; Cabrera, D.; Bai, Y.; Li, C. Generative adversarial one-shot diagnosis of transmission faults for industrial robots. Robot. Comput.-Integr. Manuf. 2023, 83, 102577. [Google Scholar] [CrossRef]
- Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Konstantin, D.; Dominique, Z. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar]
- Singh, P.; Joshi, S.D.; Patney, R.K.; Saha, K. The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 2017, 473, 2199. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Yang, Y.; Wu, Z.; Shao, H.; Pan, H.; Cheng, J. Ramanujan Fourier mode decomposition and its application in gear fault diagnosis. IEEE Trans. Ind. Inform. 2022, 18, 6079–6088. [Google Scholar] [CrossRef]
Information | CWRU | PU | SQ | Gearbox |
---|---|---|---|---|
Sampling rate (kHz) | 12 | 64 | 25.6 | 5.12 |
Rotational speed (r/min) | 1730 | 900 | 3000 | 1200 |
Number of fault types | 10 | 8 | 7 | 5 |
Total sample size | 117 × 10 | 42 × 8 | 56 × 7 | 227 × 5 |
Method | CWRU | PU | SQ | Gearbox | Average |
---|---|---|---|---|---|
TLCE | 98.09% | 93.27% | 91.65% | 97.48% | 95.12% |
1024 × 13 | 6000 × 23 | 4600 × 16 | 3000 × 30 | \ | |
MFCE | 98.60% (0.51% ↑) | 94.98% (1.71% ↑) | 96.32% (4.67% ↑) | 98.21% (0.73% ↑) | 97.03% (1.91% ↑) |
1024 (92.31% ↓) | 6000 (95.65% ↓) | 4600 (93.75% ↓) | 3000 (96.67% ↓) | \(94.60% ↓) |
SNR (dB) | Method | CWRU | PU | SQ | Gearbox | Average |
---|---|---|---|---|---|---|
−2 | WPE | 94.86 | 94.70 | 96.59 | 85.61 | 92.94 |
WPEE | 91.89 | 91.86 | 97.45 | 87.84 | 92.26 | |
MiniRocket | 82.02 | 85.45 | 85.45 | 80.15 | 83.27 | |
ETMD | 80.21 | 79.21 | 84.56 | 84.30 | 82.07 | |
GAOSD | 80.12 | 81.05 | 80.23 | 85.32 | 81.68 | |
MFCE | 83.02 | 93.98 | 94.92 | 85.41 | 89.33 | |
0 | WPE | 96.41 | 97.27 | 97.27 | 88.10 | 94.76 |
WPEE | 95.35 | 94.68 | 98.06 | 91.05 | 94.79 | |
MiniRocket | 89.49 | 87.48 | 87.87 | 80.85 | 86.42 | |
ETMD | 87.67 | 84.56 | 88.32 | 85.88 | 86.61 | |
GAOSD | 88.21 | 83.23 | 89.32 | 87.56 | 87.08 | |
MFCE | 89.33 | 95.32 | 96.77 | 87.93 | 92.34 | |
2 | WPE | 96.69 | 97.47 | 97.32 | 88.99 | 95.12 |
WPEE | 95.57 | 95.20 | 98.18 | 91.67 | 95.16 | |
MiniRocket | 95.22 | 89.86 | 90.59 | 81.77 | 89.36 | |
ETMD | 90.34 | 88.82 | 92.22 | 93.40 | 91.20 | |
GAOSD | 91.23 | 88.11 | 93.56 | 93.45 | 91.59 | |
MFCE | 95.27 | 95.68 | 98.12 | 91.89 | 95.24 | |
4 | WPE | 98.40 | 97.61 | 97.82 | 90.59 | 96.11 |
WPEE | 98.68 | 96.02 | 99.10 | 96.15 | 97.49 | |
MiniRocket | 96.91 | 92.08 | 92.60 | 82.23 | 90.96 | |
ETMD | 94.32 | 90.21 | 96.21 | 94.45 | 93.80 | |
GAOSD | 95.11 | 90.34 | 95.33 | 95.21 | 94.00 | |
MFCE | 97.78 | 96.80 | 98.82 | 96.58 | 97.50 | |
6 | WPE | 98.59 | 98.34 | 97.85 | 91.44 | 96.56 |
WPEE | 99.32 | 96.26 | 99.61 | 97.22 | 98.10 | |
MiniRocket | 98.60 | 93.66 | 93.73 | 83.16 | 92.29 | |
ETMD | 95.67 | 93.21 | 97.21 | 96.45 | 95.64 | |
GAOSD | 96.65 | 92.23 | 96.98 | 97.12 | 95.75 | |
MFCE | 99.14 | 97.18 | 98.86 | 99.10 | 98.57 |
The Number of Decomposition Layers | CWRU | PU | SQ | Gearbox | Average |
---|---|---|---|---|---|
1 | 61.39 | 82.47 | 80.79 | 80.78 | 76.36 |
2 | 96.72 | 96.96 | 90.57 | 90.82 | 93.77 |
3 | 99.54 | 97.05 | 97.92 | 97.87 | 98.10 |
4 | 99.84 | 98.93 | 99.93 | 99.92 | 99.66 |
5 | 99.95 | 99.23 | 99.94 | 99.91 | 99.76 |
Method | CWRU | PU | SQ | Gearbox | Average |
---|---|---|---|---|---|
EWT | 45.70 | 54.82 | 47.77 | 63.32 | 52.90 |
VMD | 86.91 | 84.31 | 91.64 | 82.43 | 86.32 |
FDM | 95.45 | 99.08 | 94.22 | 90.53 | 94.82 |
RFDM | 83.42 | 78.83 | 87.45 | 72.89 | 80.65 |
MFCE | 98.60 | 94.98 | 96.32 | 98.21 | 97.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Q.; Zhao, G.; Jiang, W.; Wu, J.; Dai, T. Multilayer Fused Correntropy Reprsenstation for Fault Diagnosis of Mechanical Equipment. Sensors 2024, 24, 6142. https://doi.org/10.3390/s24186142
Deng Q, Zhao G, Jiang W, Wu J, Dai T. Multilayer Fused Correntropy Reprsenstation for Fault Diagnosis of Mechanical Equipment. Sensors. 2024; 24(18):6142. https://doi.org/10.3390/s24186142
Chicago/Turabian StyleDeng, Qi, Guanhui Zhao, Weixiong Jiang, Jun Wu, and Tianjiao Dai. 2024. "Multilayer Fused Correntropy Reprsenstation for Fault Diagnosis of Mechanical Equipment" Sensors 24, no. 18: 6142. https://doi.org/10.3390/s24186142
APA StyleDeng, Q., Zhao, G., Jiang, W., Wu, J., & Dai, T. (2024). Multilayer Fused Correntropy Reprsenstation for Fault Diagnosis of Mechanical Equipment. Sensors, 24(18), 6142. https://doi.org/10.3390/s24186142