Remotely Powered Two-Wire Cooperative Sensors for Bioimpedance Imaging Wearables
<p>The conventional approach to measuring a bioimpedance <math display="inline"><semantics> <mrow> <mi>Z</mi> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math>. Two current electrodes (in red) are connected with double-shielded cables to the central unit where a current source <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>i</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> injects a current through the skin. The current flows through the impedance to be measured <math display="inline"><semantics> <mrow> <mi>Z</mi> </mrow> </semantics></math> and is drained by another current electrode driven by the current source <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>i</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msub> <mrow> <mi>i</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mrow> </semantics></math> Any practical deviation between the two current sources flows through the RL electrode (called the right leg electrode because it was originally developed for ECG and placed on the right leg). The current <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>i</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> is translated across the impedance <math display="inline"><semantics> <mrow> <mi>Z</mi> </mrow> </semantics></math> by a voltage drop <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mi>Z</mi> <msub> <mrow> <mi>i</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> measured in the same way as biopotentials (difference <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>v</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>−</mo> <msub> <mrow> <mi>v</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>)</mo> <mo>.</mo> </mrow> </semantics></math> The controller <math display="inline"><semantics> <mrow> <mi>G</mi> </mrow> </semantics></math> driving the voltage source <math display="inline"><semantics> <mrow> <msup> <mi>u</mi> <mo>′</mo> </msup> </mrow> </semantics></math> allows the common ground potential to be set equal to the body potential, thus avoiding possible saturation of the electronics due to disturbing currents picked up in the environment and flowing through the skin/electrode impedance of the RL electrode. When the impedance is measured at a given angular frequency <math display="inline"><semantics> <mrow> <mi>ω</mi> </mrow> </semantics></math>, it can be decomposed into a real part and imaginary part: <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Z</mi> </mrow> <mrow> <mi>ω</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> <mo>=</mo> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>ω</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> <mo>+</mo> <mi>j</mi> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>ω</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math>. Furthermore, the current is a cosine wave <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>i</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>I</mi> <mrow> <mrow> <mi mathvariant="normal">cos</mi> </mrow> <mo></mo> <mrow> <mi>ω</mi> <mi>t</mi> </mrow> </mrow> </mrow> </semantics></math>, and the resistance <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>ω</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> and reactance <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>ω</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> are extracted from the voltage <math display="inline"><semantics> <mrow> <mi>e</mi> </mrow> </semantics></math> with IQ demodulation, i.e., multiplication of the voltage <math display="inline"><semantics> <mrow> <mi>e</mi> </mrow> </semantics></math> by <math display="inline"><semantics> <mrow> <mrow> <mrow> <mi mathvariant="normal">cos</mi> </mrow> <mo></mo> <mrow> <mfenced separators="|"> <mrow> <mi>ω</mi> <mi>t</mi> </mrow> </mfenced> </mrow> </mrow> <mo>/</mo> <mi>I</mi> </mrow> </semantics></math> and by <math display="inline"><semantics> <mrow> <mrow> <mrow> <mi mathvariant="normal">sin</mi> </mrow> <mo></mo> <mrow> <mfenced separators="|"> <mrow> <mi>ω</mi> <mi>t</mi> </mrow> </mfenced> </mrow> </mrow> <mo>/</mo> <mi>I</mi> </mrow> </semantics></math>, respectively, followed by low-pass filters.</p> "> Figure 2
<p>Cooperative sensors are active electrodes with additional circuitry that enables their connection via a parallel bus with up to two wires. The sensors communicate their measured data to a central unit, which also provides a synchronized clock. In applications not required to be defibrillator proof, the parallel bus can be made from conductive fabric. In this case, the controller <math display="inline"><semantics> <mrow> <mi>G</mi> </mrow> </semantics></math> of the central unit maintains the voltage between the lower textile and the body at nearly 0 V, removing the need for bottom-side insulation. The top conductive textile can easily be insulated with an additional layer of fabric (e.g., a regular garment) if the excess leakage currents are electronically monitored. Highly integrated cooperative sensors can be attached and connected to the fabric, making the assembly seamless while maintaining the usual properties of the fabric (flexibility, stretchability, breathability, and washability). Cooperative sensors can be current electrodes (when the current <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>i</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> is different from 0) or potential electrodes (when the current <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>i</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> is zero). Symbol legend in <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a>.</p> "> Figure 3
<p>The connection of 16 sensors around a body part (e.g., chest or limb) for EIT measurements. (<b>a</b>) A device with two different types of sensors, one with a potential electrode and one with a current electrode. (<b>b</b>) A device with a single type of sensor with a potential or current electrode depending on the current/function (equal to 0 for potential electrode; different from 0 for current electrode). The symbol legend is in <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a>.</p> "> Figure 4
<p>A simple bootstrap circuit is used to achieve extremely high impedance (input impedance for potential electrode and output impedance for current electrode) by leveraging the floating battery in each sensor. The parts added for the measurement of bioimpedances are shown in red—the other parts are the same as for biopotentials only [<a href="#B1-sensors-24-05896" class="html-bibr">1</a>]. The implementation of the current source (in red) can be simple thanks to the bootstrapping circuit [<a href="#B15-sensors-24-05896" class="html-bibr">15</a>] that significantly increases the open-loop impedance and has a rail-to-rail voltage range. The current return for the red current source comes from the upper wire only. As the lower wire is used for the measurement of potential, the impedance of the wires does not affect the measurement of bioimpedance. Patients are protected from leakage currents by diodes (not depicted) that prevent stored charge from leaving a sensor while simultaneously enabling the recharging of the batteries through the two-wire bus when the system is not being worn. See <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a> for a symbol legend.</p> "> Figure 5
<p>Remotely powered cooperative sensors for bioimpedance measurement with dry electrodes, with digital communication at 1.28 Mb/s in both directions (full duplex) and remote power supply at 500 Hz. Symbol legend in <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a>.</p> "> Figure 6
<p>Remotely powered cooperative sensors for bioimpedance measurement with dry electrodes, with analog communication at 500,000 samples per second and remote supply voltage <math display="inline"><semantics> <mrow> <mi>U</mi> </mrow> </semantics></math> at 1 MHz. Left: schematic overview of central unit circuit; middle: schematic overview of sensor circuit; right: detailed circuit diagram of sensor. Symbol legend is shown in <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a>.</p> "> Figure 7
<p>A supply voltage <math display="inline"><semantics> <mrow> <mi>U</mi> </mrow> </semantics></math> consisting of a 1 MHz square wave with a sync marker (periodicity break) consisting of an HH period with a Manchester edge (in blue) every 1 s (every 1,000,000 periods of the 1 MHz square wave). The other periods contain a powering period H and a communication period L. If the period is HL, the sensors understand it as a 1, whereas LH is understood as 0. This upstream digital communication can be used to configure or control the sensors. The sensors harvest energy during subperiod H, and one of them (determined by the sensor ID and the position of the period with respect to the synch marker, shown in red in the figure) transmits an analog value during subperiod L.</p> "> Figure 8
<p>A possible implementation of the comb filter. The symbol legend is provided in <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a>.</p> "> Figure 9
<p>WELMO vest with embedded EIT chest strap with off-the-shelf components (textile part made by Smartex in framework of EU project WELMO). Left: worn vest, middle top: front view of cooperative sensor with stainless steel dry current/potential electrode and stethoscope (center), middle bottom: back view of cooperative sensor with its two connectors to 2-wire parallel bus, right top: open vest with embedded EIT chest strap with reference and RL textile electrodes ① and cooperative sensors with dry electrode ② and stethoscope ③, right bottom: back view of EIT chest strap showing 2-wire parallel bus and attachment washers.</p> "> Figure 10
<p>A possible implementation of the principles shown in <a href="#sensors-24-05896-f005" class="html-fig">Figure 5</a> (as prototyped in the device shown in <a href="#sensors-24-05896-f009" class="html-fig">Figure 9</a>). Note that the safety protection circuit is not pictured for simplicity. The symbol legend is provided in <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a>.</p> "> Figure 11
<p>Configurations <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mn>2</mn> </mrow> </mfenced> </mrow> </semantics></math> ((<b>top</b>) and (<b>bottom</b>)), where the EIT device (left and in black) is connected to two resistors <math display="inline"><semantics> <mrow> <mi>r</mi> </mrow> </semantics></math> (in red) to provide information corresponding to different resistance matrices <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>R</mi> </mrow> <mrow> <mfenced separators="|"> <mrow> <mn>1</mn> </mrow> </mfenced> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>R</mi> </mrow> <mrow> <mfenced separators="|"> <mrow> <mn>2</mn> </mrow> </mfenced> </mrow> </msup> </mrow> </semantics></math>, etc. (right), for the optimization function <math display="inline"><semantics> <mrow> <mi>f</mi> </mrow> </semantics></math>, allowing to compute by optimization the calibration function <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>I</mi> <mo>,</mo> <mi>u</mi> </mrow> </mfenced> <mo>↦</mo> <mfenced separators="|"> <mrow> <mi>i</mi> <mo>,</mo> <mi>U</mi> </mrow> </mfenced> </mrow> </semantics></math>. The symbol legend is shown in <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a>.</p> "> Figure 11 Cont.
<p>Configurations <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mn>2</mn> </mrow> </mfenced> </mrow> </semantics></math> ((<b>top</b>) and (<b>bottom</b>)), where the EIT device (left and in black) is connected to two resistors <math display="inline"><semantics> <mrow> <mi>r</mi> </mrow> </semantics></math> (in red) to provide information corresponding to different resistance matrices <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>R</mi> </mrow> <mrow> <mfenced separators="|"> <mrow> <mn>1</mn> </mrow> </mfenced> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>R</mi> </mrow> <mrow> <mfenced separators="|"> <mrow> <mn>2</mn> </mrow> </mfenced> </mrow> </msup> </mrow> </semantics></math>, etc. (right), for the optimization function <math display="inline"><semantics> <mrow> <mi>f</mi> </mrow> </semantics></math>, allowing to compute by optimization the calibration function <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>I</mi> <mo>,</mo> <mi>u</mi> </mrow> </mfenced> <mo>↦</mo> <mfenced separators="|"> <mrow> <mi>i</mi> <mo>,</mo> <mi>U</mi> </mrow> </mfenced> </mrow> </semantics></math>. The symbol legend is shown in <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a>.</p> "> Figure 12
<p>Errors <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>−</mo> <mi>R</mi> <mi>I</mi> </mrow> </semantics></math> (<b>top</b>) and <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>−</mo> <mi>R</mi> <mi>i</mi> </mrow> </semantics></math>, i.e., after calibration (<b>bottom</b>) for configuration <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math>. Comparable results are obtained for other configurations <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mn>2</mn> </mrow> </mfenced> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mn>16</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 13
<p>A block diagram of the ASIC implementation of cooperative sensors for bioimpedance measurements. The circuit blocks that interface with the 2-wire sensor bus are marked in red, and the signal processing circuits are in green. The symbol legend is shown in <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a>.</p> "> Figure 14
<p>A diagram of the central unit based on the approach shown in <a href="#sensors-24-05896-f006" class="html-fig">Figure 6</a>. The symbol legend is shown in <a href="#app1-sensors-24-05896" class="html-app">Appendix A</a>.</p> "> Figure 15
<p>A cut view of the integration of a sensor realized with an ASIC. ① A PCB (green) with a mounted ASIC (black) and finger spring contacts (yellow). ② The bottom part of the housing with an over-molded stainless steel skin electrode ③, with the connection between the PCB and the electrode being obtained with a spring contact (in yellow). ④ The top part of the housing with over-molded wire contacts ⑤ (only one is shown). ⑥ An electrically conductive track on a slightly compressible textile ⑦. ⑧ A clamp pressing the sensor onto the textile. ⑨ A reinforcement ring on belt textile ⑩. The height of the ASIC sensor (without a clamp and without textile) is 4.7 mm. The size of the sensor can be reduced if only the bioimpedance is considered (in our development, we had sensors that also included a stethoscope, not shown in this figure).</p> "> Figure 16
<p>(<b>a</b>) Real setup and (<b>b</b>) functional diagram of setup for first verifications of concept including four sensors, i.e., ASIC (left), central unit (right), and resistance to measure (center).</p> "> Figure 17
<p>The setup used to measure the input impedance of the ASIC frontend amplifier.</p> "> Figure 18
<p>(<b>Top row</b>): the ASIC sensor harness worn (<b>left</b>) and open (<b>right</b>), exposing the sensors and the electrodes on the sensors and two textile electrodes. (<b>Middle row</b>): the ASIC sensor clamped to a 3D knit on two electrically conductive tracks, realized as conductive tapes (black). (<b>Bottom row</b>): the belt textile with the reinforcement ring (seen as a slight bump in the photo) added on top of the conductive tapes.</p> "> Figure A1
<p>Symbol legends used in figures. Electronic symbols in black, functional diagram symbols in blue. A1: resistance, A2: impedance, A3: voltage source, A4: controlled voltage source, A5: voltage (between two conductors), A6: summator, A7: multiplicator, B1: inductance, B2: shielded cable (e.g., coaxial cable), B3: current source, B4: controlled current source, B5: current (in a conductor), B6: transfer function, B7: low-pass filter, C1: capacitance, C2: diode, C3: power supply block, C4: LDO (low-dropout regulator), C5: switch, C6: electrode, C7: pass-through (combination of RL electrode with controller <span class="html-italic">G</span> resulting virtually in a 0 Ω connection with body core), D1: operational amplifier, D2: instrumentation amplifier, D3: power supply including a battery, D4: battery, D5: connection to positive power supply rail, D6: clock recovery and sync block, D7: down sampling by 2, E1: follower, E2: Schmitt trigger, E3: power supply block harvesting energy with controlled current, E5: common ground, E6: modulator, E7: demodulator.</p> ">
Abstract
:1. Introduction
2. State of the Art in Cooperative Sensors
2.1. Basic Circuits and Their Interconnections
2.2. Floating Supply, Bootstrapping, Current Source, and Current/Potential Wire Separation
3. Methods
3.1. Previous Approach Using Off-the-Shelf Components and Powering at 500 Hz
3.2. The Approach Addressing the Safety Issue with Powering at 1 MHz and ASIC
3.3. Comparison to Existing Work
4. Results
4.1. Legacy Approach with 500 Hz Powering and Off-the-Shelf Components
4.1.1. WELMO Vest
4.1.2. Calibration
4.2. Addressing Safety with Powering at 1 MHz and an ASIC Implementation
4.2.1. ASIC Architecture
4.2.2. The Architecture of the Central Unit
4.2.3. Sensor Housings
4.2.4. Implementation Results
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Adler, A.; Holder, D. (Eds.) Electrical Impedance Tomography—Methods, History and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9780367023782. [Google Scholar]
- Yang, J. The Investigation and Implementation of Electrical Impedance Tomography Hardware System. Ph.D. Thesis, De Montfort University, Leicester, UK, 2006. [Google Scholar]
- Lee, M.H.; Jang, G.Y.; Kim, Y.E.; Yoo, P.J.; Wi, H.; Oh, T.I.; Woo, E.J. Portable multi-parameter electrical impedance tomography for sleep apnea and hypoventilation monitoring: Feasibility study. Physiol. Meas. 2018, 39, 124004. [Google Scholar] [CrossRef] [PubMed]
- Gaggero, P.O. Miniaturization and Distinguishability Limits of Electrical Impedance Tomography for Biomedical Application. Ph.D. Thesis, Université de Neuchâtel, Neuchâtel, Switzerland, 2011. [Google Scholar] [CrossRef]
- Qin, S.; Yao, Y.; Xu, Y.; Xu, D.; Gao, Y.; Xing, S.; Li, Z. Characteristics and topic trends on electrical impedance tomography hardware publications. Front. Physiol. 2022, 13, 1011941. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, V.; Rengifo, C. Electrical Impedance Tomography: Hardware Fundamentals and Medical Applications. Ing. Solidar. 2020, 16, 1–29. [Google Scholar] [CrossRef]
- Kim, M.; Bae, J.; Yoo, H.-J. Wearable 3D lung ventilation monitoring system with multi frequency electrical impedance tomography. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy, 19–21 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Proença, M.; Braun, F.; Lemay, M.; Solà, J.; Adler, A.; Riedel, T.; Messerli, F.H.; Thiran, J.-P.; Rimoldi, S.F.; Rexhaj, E. Non-invasive pulmonary artery pressure estimation by electrical impedance tomography in a controlled hypoxemia study in healthy subjects. Sci. Rep. 2020, 10, 21462. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.G.; Clark, J.W. (Eds.) Medical Instrumentation: Application and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- IEC 60601-1; Medical Electrical Equipment—Part 1: General Requirements for Basic Safety and Essential Performance. IEC: Geneva, Switzerland, 2020.
- Chételat, O. Synchronization and Communication Bus for Biopotential and Bioimpedance Measurement Systems. EP Patent 2567657 B1, 13 March 2013. [Google Scholar]
- Chételat, O.; Correvon, M. Measurement Device for Measuring Bio-Impedance and/or a Bio-Potential of a Human or Animal Body. U.S. Patent 2015/0173677 B2, 25 June 2015. [Google Scholar]
- Rapin, M.; Proença, M.; Braun, F.; Meier, C.; Sola, J.; Ferrario, D.; Grossenbacher, O.; Porchet, J.-A.; Chételat, O. Cooperative dry-electrode sensors for multi-lead biopotential and bioimpedance monitoring. Physiol. Meas. 2015, 36, 767–783. [Google Scholar] [CrossRef] [PubMed]
- Rapin, M. A Wearable Sensor Architecture for High-Quality Measurement of Multilead ECG and Frequency-Multiplexed EIT. Ph.D. Thesis, ETH, Zürich, Switzerland, 2018. [Google Scholar] [CrossRef]
- Wade, E.; Asada, H. Cable-free wearable sensor system using a DC powerline body network in a conductive fabric vest. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 5376–5379. [Google Scholar] [CrossRef]
- Akita, J.; Shinmura, T.; Toda, M. Toda Flexible Network Infrastructure for Wearable Computing Using Conductive Fabric and Its Evaluation. In Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06), Lisbon, Portugal, 4–7 July 2006; p. 65. [Google Scholar] [CrossRef]
- Noda, A.; Shinoda, H. Inter-IC for Wearables (I2We): Power and Data Transfer Over Double-Sided Conductive Textile. IEEE Trans. Biomed. Circuits Syst. 2018, 13, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Noda, A.; Fujiwara, M.; Makino, Y.; Shinoda, H. Fast half-duplex communication on e-textile based wearable networks. IEICE Commun. Express 2020, 9, 426–432. [Google Scholar] [CrossRef]
- Chételat, O.; Rapin, M.; Bonnal, B.; Fivaz, A.; Wacker, J.; Sporrer, B. Remotely Powered Two-Wire Cooperative Sensors for Biopotential Imaging Wearables. Sensors 2022, 22, 8219. [Google Scholar] [CrossRef] [PubMed]
- Chételat, O.; Solà, J. Floating Front-End Amplifier and One-Wire Measuring Device. U.S. Patent 8427181 B2, 16 September 2009. [Google Scholar]
- Chételat, O.; Gentsch, R.; Krauss, J.; Luprano, J. Getting rid of the wires and connectors in physiological monitoring. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008. [Google Scholar] [CrossRef]
- Chételat, O.; Bonnal, B.; Fivaz, A. Remotely Powered Cooperative Sensor Device. U.S. Patent 2021/0169543 A1, 10 June 2021. [Google Scholar]
- Frerichs, I.; Paradiso, R.; Kilintzis, V.; Rocha, B.M.; Braun, F.; Rapin, M.; Caldani, L.; Beredimas, N.; Trechlis, R.; Suursalu, S.; et al. Wearable pulmonary monitoring system with integrated functional lung imaging and chest sound recording: A clinical investigation in healthy subjects. Physiol. Meas. 2023, 44, 045002. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.M.; Filos, D.; Mendes, L.; Serbes, G.; Ulukaya, S.; Kahya, Y.P.; Jakovljevic, N.; Turukalo, T.L.; Vogiatzis, I.M.; Perantoni, E.; et al. An open access database for the evaluation of respiratory sound classification algorithms. Physiol. Meas. 2019, 40, 035001. [Google Scholar] [CrossRef] [PubMed]
- Frerichs, I.; Vogt, B.; Wacker, J.; Paradiso, R.; Braun, F.; Rapin, M.; Caldani, L.; Chételat, O.; Weiler, N. Multimodal remote chest monitoring system with wearable sensors: A validation study in healthy subjects. Physiol. Meas. 2020, 41, 015006. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, G.; Rapin, M.; Pessoa, D.; Rocha, B.M.; de Sousa, A.M.; Rusconi, R.; Carvalho, P.; Wacker, J.; Paiva, R.P.; Chételat, O. A Wearable Stethoscope for Long-Term Ambulatory Respiratory Health Monitoring. Sensors 2020, 20, 5124. [Google Scholar] [CrossRef] [PubMed]
- Lasarow, L.; Vogt, B.; Zhao, Z.; Balke, L.; Weiler, N.; Frerichs, I. Regional lung function measures determined by electrical impedance tomography during repetitive ventilation manoeuvres in patients with COPD. Physiol. Meas. 2021, 42, 015008. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.M.; Pessoa, D.; Marques, A.; Carvalho, P.; Paiva, R.P. Automatic Classification of Adventitious Respiratory Sounds: A (Un)Solved Problem? Sensors 2021, 21, 57. [Google Scholar] [CrossRef] [PubMed]
- Frerichs, I. EIT for Measurement of Lung Function. In Electrical Impedance Tomography: Methods, History and Applications, 2nd ed.; Adler, A., Holder, D., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 171–190. ISBN 978-0-7503-0952-3. [Google Scholar] [CrossRef]
- Haris, K.; Vogt, B.; Strodthoff, C.; Pessoa, D.; Cheimariotis, G.A.; Rocha, B.; Petmezas, G.; Weiler, N.; Paiva, R.P.; de Carvalho, P.; et al. Identification and analysis of stable breathing periods in electrical impedance tomography recordings. Physiol. Meas. 2021, 42, 64003. [Google Scholar] [CrossRef] [PubMed]
- Frerichs, I.; Zhao, Z.; Dai, M.; Braun, F.; Proença, M.; Rapin, M.; Wacker, J.; Lemay, M.; Haris, K.; Petmezas, G.; et al. Respiratory image analysis. In Wearable Sensing and Intelligent Data Analysis for Respiratory Management; Paiva, R.P., de Carvalho, P., Kilintzis, V., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 169–212. ISBN 978-0-12-823447-1. [Google Scholar]
- Frerichs, I.; Vogt, B.; Weiler, N. Elektrische Impedanztomographie zur Untersuchung der regionalen Lungenfunktion. Atemwegs-Lungenkrankh. 2021, 47, 401–411. [Google Scholar] [CrossRef]
- Frerichs, I.; Lasarow, L.; Strodthoff, C.; Vogt, B.; Zhao, Z.; Weiler, N. Spatial ventilation inhomogeneity determined by electrical impedance tomography in patients with COPD. Front. Physiol. 2021, 12, 762791. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, D.; Rocha, B.M.; Cheimariotis, G.A.; Haris, K.; Strodthoff, C.; Kaimakamis, E.; Maglaveras, N.; Frerichs, I.; de Carvalho, P.; Paiva, R.P. Classification of electrical impedance tomography data using machine learning. In Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 1–5 November 2021; pp. 349–353. [Google Scholar] [CrossRef]
- Paradiso, R.; Caldani, L. Textiles and Smart Materials for Wearable Monitoring Systems. In Wearable Sensing and Intelligent Data Analysis for Respiratory Management; Paiva, R.P., de Carvalho, P., Kilintzis, V., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 169–212. ISBN 978-0-12-823447-1. [Google Scholar]
- Wacker, J.; Bonnal, B.; Braun, F.; Chételat, O.; Ferrario, D.; Lemay, M.; Rapin, M.; Renevey, P.; Yilmaz, G. Wearable Sensing and Intelligent Data Analysis for Respiratory Management; Paiva, R.P., de Carvalho, P., Kilintzis, V., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 59–93. ISBN 978-0-12-823447-1. [Google Scholar]
Technique/Features | Ref. | Comment |
---|---|---|
Conventional star arrangement | Not suitable for wearables with many electrodes | |
Passive electrodes, shielded cables | [1] | Widespread |
Active electrodes, multi-wire cables | [2,3] | Well known, but not often used |
Parallel bus arrangement | Scalable (connector size independent of nb. of electr.) | |
Bus with more than two wires | [4] | Not easily flexible, stretchable, breathable, washable |
Two-wire bus (cooperative sensors) | Section 2 | Simplest connection |
Locally powered Bootstrapping Separate potential/impedance wires | Section 2.1 Section 2.2 Section 2.2 | Easy to comply with safety (medical standards) Suitable for dry electrodes, easy current source Wire impedance is not part of measured bioimpedance |
Remotely powered (biopotential only) | [19] | |
Remotely powered (+bioimpedance) | Section 3 and Section 4 | Sensors can be miniaturized |
No monitoring of leakage currents No bootstrapping No separate potential/impedance wires | Section 3.1 and Section 4.1 | Requires reliable waterproof double insulation Not ideal for dry electrodes, complex current source Measured bioimpedance including wire impedance |
Monitorable leakage currents Bootstrapping Separate potential/impedance wires | Section 3.2 and Section 4.2 | Suitably flexible, stretchable, breathable, washable Suitable for dry electrodes, high-end current source Wire impedance is not part of measured bioimpedance |
Channel | Injected Current (100 µA rms, 40 kHz Square Wave) |
---|---|
1 | ① → ⑦ |
2 | ② → ⑧ |
… | … |
10 | ⑩ → ⑯ |
11 | ⑪ → ① |
… | … |
16 | ⑯ → ⑥ |
17–25 | unused (yet) |
R (Ω) ±0.02% | Measurement (Ω) | Linearity (% FS) | Noise in 0–2.5 Hz (mΩ rms) |
---|---|---|---|
250 | 249.95 | −0.02 | 32.49 |
200 | 200.75 | 0.30 | 37.38 |
150 | 149.54 | −0.18 | 39.79 |
100 | 99.32 | −0.27 | 33.19 |
50 | 49.97 | −0.01 | 32.95 |
0 | 0.47 | 0.19 | 30.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chételat, O.; Rapin, M.; Bonnal, B.; Fivaz, A.; Sporrer, B.; Rosenthal, J.; Wacker, J. Remotely Powered Two-Wire Cooperative Sensors for Bioimpedance Imaging Wearables. Sensors 2024, 24, 5896. https://doi.org/10.3390/s24185896
Chételat O, Rapin M, Bonnal B, Fivaz A, Sporrer B, Rosenthal J, Wacker J. Remotely Powered Two-Wire Cooperative Sensors for Bioimpedance Imaging Wearables. Sensors. 2024; 24(18):5896. https://doi.org/10.3390/s24185896
Chicago/Turabian StyleChételat, Olivier, Michaël Rapin, Benjamin Bonnal, André Fivaz, Benjamin Sporrer, James Rosenthal, and Josias Wacker. 2024. "Remotely Powered Two-Wire Cooperative Sensors for Bioimpedance Imaging Wearables" Sensors 24, no. 18: 5896. https://doi.org/10.3390/s24185896