AI-Enabled Sensor Fusion of Time-of-Flight Imaging and mmWave for Concealed Metal Detection
<p>Experimental setup for radar and depth-camera-based concealed metal object detection. The setup in (<b>a</b>) shows one or two subjects walking in view of the devices with one subject concealing a knife beneath their first layer of clothing. The knife location is labeled with a green paper marker for training using the RGB camera data. The acquisition data modalities are listed in (<b>b</b>), specifically, the intermediate-frequency radar signal (where colour indicates the real and imaginary parts of the two channels), depth (either Intel RealSense or POLIMI SPAD camera) and RGB color images. The relative field of views (FoVs) for each device are shown in (<b>c</b>,<b>d</b>) on both horizontal and vertical axes. Intel RS RGB image and all depth maps throughout depict the authors, with permission. Three-dimensional render courtesy of Diana Kruhlyk.</p> "> Figure 2
<p>Our neural network architecture, <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>m</mi> <mi>S</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> <msub> <mi>e</mi> <mrow> <mi>A</mi> <mi>F</mi> </mrow> </msub> </mrow> </semantics></math>, for concealed metal detection. We process the radar data as sequences using convolutional LSTM blocks and create embeddings from the spatial depth image using convolutional blocks with large receptive fields. After concatenating the embeddings from both modalities, we extract joint concepts from them using the deep feature magnification block. We then use a convolutional decoder coupled with a feature extraction and embedding module to upsample this encoding to generate the output mask.</p> "> Figure 3
<p>(<b>a</b>) The structure of the deep feature magnification block. This takes the concatenated features from both modalities as an input and learns the relation between them by focusing on relevant features using increasing convolutional kernels and receptive field sizes in the convolutional block. (<b>b</b>) The feature extraction and embedding block. This processes the upsampled latent features with increasing convolution kernel sizes in order to learn to correlate the location of the concealed object with the depth features, achieved by processing the encodings at varying receptive fields of the convolution kernel.</p> "> Figure 4
<p>ToF 1P (Wide FoV) visualizations. Prediction (red) and ground truth (blue) are overlayed to depict agreement (green), which represents the standard F-scores in each frame. (<b>a</b>) High False-Positive rate, (<b>b</b>) high False-Negative rate, (<b>c</b>,<b>e</b>) high agreement, (<b>d</b>) translated prediction. The shown images are samples of video frames from a test set which comprises a prediction mask overlayed on the original depth frame for the P2GO radar and the Intel RealSense depth camera with one person in the scene. <a href="#app1-sensors-24-05865" class="html-app">Visualization 1 in the Supplementary Materials</a>.</p> "> Figure 5
<p>SPAD <math display="inline"><semantics> <mrow> <mn mathvariant="monospace">1</mn> <mi mathvariant="monospace">P</mi> </mrow> </semantics></math> visualizations. (<b>a</b>) High False-Positive rate, (<b>b</b>) negative label, (<b>c</b>,<b>d</b>) high agreement, (<b>e</b>) translated prediction. The shown images are samples of video frames from a test set which comprises a prediction mask overlayed on the original depth frame for the P2GO radar and the POLIMI SPAD camera with one person in the scene. <a href="#app1-sensors-24-05865" class="html-app">Visualization 2 in the Supplementary Materials</a>.</p> "> Figure 6
<p>SPAD <math display="inline"><semantics> <mrow> <mn mathvariant="monospace">2</mn> <msub> <mi mathvariant="monospace">P</mi> <mn mathvariant="monospace">2</mn> </msub> </mrow> </semantics></math> visualizations. (<b>a</b>) Mislabelling, (<b>b</b>) semantic issue, (<b>c</b>–<b>e</b>) high agreement. The shown images are samples of video frames from a test set which comprises a prediction mask overlayed on the original depth frame for the P2GO radar and the POLIMI SPAD camera with two people in the scene. <a href="#app1-sensors-24-05865" class="html-app">Visualization 3 in the Supplementary Materials</a>.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Experimental Procedure
2.2. Network Architecture
2.2.1. Implementation
2.2.2. mmSenseAF
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Appleby, R.; Anderton, R.N. Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance. Proc. IEEE 2007, 95, 1683–1690. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, F.; Wang, B.; Liu, K.J.R. mSense: Towards Mobile Material Sensing with a Single Millimeter-Wave Radio. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–20. [Google Scholar] [CrossRef]
- Taylor, Z.D.; Garritano, J.; Sung, S.; Bajwa, N.; Bennett, D.B.; Nowroozi, B.; Tewari, P.; Sayre, J.W.; Hubschman, J.P.; Deng, S.X.; et al. THz and mm-Wave Sensing of Corneal Tissue Water Content: In Vivo Sensing and Imaging Results. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Nehorai, A. Adaptive OFDM Radar for Target Detection in Multipath Scenarios. IEEE Trans. Signal Process. 2011, 59, 78–90. [Google Scholar] [CrossRef]
- Turpin, A.; Musarra, G.; Kapitany, V.; Tonolini, F.; Lyons, A.; Starshynov, I.; Villa, F.; Conca, E.; Fioranelli, F.; Murray-Smith, R.; et al. Spatial images from temporal data. Optica 2020, 7, 900. [Google Scholar] [CrossRef]
- Turpin, A.; Kapitany, V.; Radford, J.; Rovelli, D.; Mitchell, K.; Lyons, A.; Starshynov, I.; Faccio, D. 3D Imaging from Multipath Temporal Echoes. Phys. Rev. Lett. 2021, 126, 1–13. [Google Scholar] [CrossRef]
- Vakalis, S.; Gong, L.; Nanzer, J.A. Imaging with WiFi. IEEE Access 2019, 7, 28616–28624. [Google Scholar] [CrossRef]
- Ge, Y.; Taha, A.; Shah, S.A.; Dashtipour, K.; Zhu, S.; Cooper, J.; Abbasi, Q.H.; Imran, M.A. Contactless WiFi Sensing and Monitoring for Future Healthcare - Emerging Trends, Challenges, and Opportunities. IEEE Rev. Biomed. Eng. 2023, 16, 171–191. [Google Scholar] [CrossRef]
- Williams, T.D.; Vaidya, N.M. A compact, low-cost, passive MMW security scanner. In Proceedings of the Passive Millimeter-Wave Imaging Technology VIII; Appleby, R., Wikner, D.A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2005; Volume 5789, pp. 109–116. [Google Scholar] [CrossRef]
- Accardo, J.; Chaudhry, M.A. Radiation exposure and privacy concerns surrounding full-body scanners in airports. J. Radiat. Res. Appl. Sci. 2014, 7, 198–200. [Google Scholar] [CrossRef]
- Rosenberg, A.L. Passive Millimeter Wave Imaging: A New Weapon in the Fight Against Crime or a Fourth Amendment Violation? Alb. LJ Sci. Tech. 1998, 9, 135. [Google Scholar]
- Martin, C.A.; Lovberg, J.A.; Dean, W.H.; Ibrahim, E. High-resolution passive millimeter-wave security screening using few amplifiers. In Proceedings of the Passive Millimeter-Wave Imaging Technology X; Appleby, R., Wikner, D.A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2007; Volume 6548, p. 654806. [Google Scholar] [CrossRef]
- SSI. Athena Security Unveils Occupancy Tracking, Concealed Gun Detection. Security Sales and Integration. 2024. Available online: https://www.securitysales.com/surveillance/athena-security-occupancy-tracking-concealed-gun-detection/ (accessed on 30 August 2024).
- Hallbjörner, P.; Cheng, S. Improvement in 77-GHz radar cross section of road work jacket and side screen by use of planar flexible retrodirective reflectors. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1085–1088. [Google Scholar] [CrossRef]
- Yamada, N.; Tanaka, Y.; Nishikawa, K. Radar cross section for pedestrian in 76GHz band. In Proceedings of the 2005 European Microwave Conference, Paris, France, 4–6 October 2005; Volume 2, p. 4. [Google Scholar]
- Baker, J. How Can AI Help Speed Up Airport Security? 2019. Available online: https://www.airport-technology.com/features/ai-at-airports-security (accessed on 3 July 2024).
- IPVM. How Metal Detectors Can Perform Like Evolv at 90% Lower Price. 2023. Available online: https://ipvm.com/reports/metal-evolv (accessed on 8 July 2024).
- Sequestim. Express Security Solutions. 2020. Available online: https://sequestim.com/technology (accessed on 8 July 2024).
- Clayton, J. AI Weapons Scanner Evolv Backtracks on UK Testing Claims. 2024. BBC News Article. Available online: https://www.bbc.co.uk/news/technology-68547574 (accessed on 10 July 2024).
- Vizitiu, V.; Henning, R.; Dragomir, M. Managing Pandemics in Airport Security Environments: A Comparative Analysis of Classic Airport Security and Smart Security Approaches. In Proceedings of the Advances in Manufacturing IV; Gapiński, B., Ciszak, O., Ivanov, V., Machado, J.M., Eds.; Springer: Cham, Switzerland, 2024; pp. 312–324. [Google Scholar]
- Hankin, A.; Hertz, M.; Simon, T. Impacts of Metal Detector Use in Schools: Insights from 15 Years of Research*. J. Sch. Health 2011, 81, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, R.; Davis, T. The Impact of Random Metal Detector Searches on Contraband Possession and Feelings of Safety at School. Educ. Policy 2018, 32, 569–597. [Google Scholar] [CrossRef]
- Nirgudkar, S. Beyond Politics: Technology-A Rational Alternative to Prevent School Shootings. Intersect Stanf. J. Sci. Technol. Soc. 2024, 17, 2. Available online: https://ojs.stanford.edu/ojs/index.php/intersect/article/view/2820 (accessed on 8 July 2024).
- Mitchell, K.; Kassem, K.; Kaul, C.; Kapitany, V.; Binner, P.; Ramsay, A.; Faccio, D.; Murray-Smith, R. mmSense: Detecting Concealed Weapons with a Miniature Radar Sensor. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Pei, D.; Gong, D.; Liu, K.; Zeng, X.; Zhang, S.; Chen, M.; Zheng, K. mmCTD: Concealed Threat Detection for Cruise Ships via Mmwave Radar. IEEE Trans. Veh. Technol. 2024, 1–18. [Google Scholar] [CrossRef]
- Mahdipour, H.; Laviada, J.; Las-Heras, F. Detection Capability of a CNN-Based Imageless Millimeter Wave System for Static Concealed Objects. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024; pp. 1–5. [Google Scholar]
- Chen, D.; Schlegel, A.; Nanzer, J.A. Imageless Contraband Detection Using a Millimeter-Wave Dynamic Antenna Array via Spatial Fourier Domain Sampling. arXiv 2024, arXiv:2406.05924. [Google Scholar] [CrossRef]
- Rao, S.; Instruments, T. The Fundamentals of Millimeter Wave Radar Sensors (Rev. A). Texas Instruments Incorporated (Dallas, TX, USA) White Paper. 2017. Available online: https://www.ti.com/lit/wp/spyy005a/spyy005a.pdf (accessed on 8 July 2024).
- Skolnik, M.I. Introduction to Radar Systems; McGraw-Hill: New York, NY, USA, 1999; Volume 19. [Google Scholar] [CrossRef]
- AG, I.T. Demo Position2GO Software Guide XENSIV 24 GHz Radar. Infineon Technologies AG (Neubiberg, Germany) White Paper. 2023. Available online: https://www.infineon.com/dgdl/Infineon-UM_Demo_Position2Go_Software_Guide-UserManual-v01_20-EN.pdf?fileId=5546d4627762291e017769040a233324 (accessed on 8 July 2024).
- Intel. Intel Realsense D400 Series/SR300 Viewer: User Guide; Technical Report; Intel Corporation: Santa Clara, CA, USA, 2018. [Google Scholar]
- Bellisai, S.; Bronzi, D.; Villa, F.A.; Tisa, S.; Tosi, A.; Zappa, F. Single-photon pulsed-light indirect time-of-flight 3D ranging. Opt. Express 2013, 21, 5086. [Google Scholar] [CrossRef]
- Zappa, F.; Tosi, A. MiSPIA: Microelectronic single-photon 3D imaging arrays for low-light high-speed safety and security applications. Adv. Photon Count. Tech. VII 2013, 8727, 87270L. [Google Scholar] [CrossRef]
- Bronzi, D.; Member, S.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.; Member, S.; Durini, D.; Weyers, S.; Brockherde, W. Array for 2-D Imaging and 3-D Ranging. IEEE J. Sel. Top. Quantum Electron. 2014, 20. [Google Scholar] [CrossRef]
- Islam, M.M.; Nooruddin, S.; Karray, F.; Muhammad, G. Multi-level feature fusion for multimodal human activity recognition in Internet of Healthcare Things. Inf. Fusion 2023, 94, 17–31. [Google Scholar] [CrossRef]
- Xaviar, S.; Yang, X.; Ardakanian, O. Robust Multimodal Fusion for Human Activity Recognition. arXiv 2023, arXiv:2303.04636. [Google Scholar] [CrossRef]
- Ryu, J.; Rehman, M.U.; Nizami, I.F.; Chong, K.T. SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation. Comput. Biol. Med. 2023, 163, 107132. [Google Scholar] [CrossRef] [PubMed]
- Kaul, C.; Mitchell, K.J.; Kassem, K.; Tragakis, A.; Kapitany, V.; Starshynov, I.; Albert Villa, F.; Murray-Smith, R.; Faccio, D. AI-Enabled Sensor Fusion of Time of Flight Imaging and Mmwave for Concealed Metal Detection. arXiv 2024, arXiv:2408.00816. [Google Scholar] [CrossRef]
- Pearce, A.; Zhang, J.A.; Xu, R.; Wu, K. Multi-Object Tracking with mmWave Radar: A Review. Electronics 2023, 12, 308. [Google Scholar] [CrossRef]
- Huang, X.; Cheena, H.; Thomas, A.; Tsoi, J.K.P. Indoor Detection and Tracking of People Using mmWave Sensor. J. Sens. 2021, 2021, 6657709. [Google Scholar] [CrossRef]
- Pegoraro, J.; Meneghello, F.; Rossi, M. Multiperson Continuous Tracking and Identification From mm-Wave Micro-Doppler Signatures. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2994–3009. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, C.; Zhang, T.; Li, S.; Yuan, Y.; Wu, C.T.M.; Chen, Y.; Petropulu, A. Simultaneous Monitoring of Multiple People’s Vital Sign Leveraging a Single Phased-MIMO Radar. IEEE J. Electromagn. Microwaves Med. Biol. 2022, 6, 311–320. [Google Scholar] [CrossRef]
Specification | Value and Range |
---|---|
Radar model | Infineon Demo Position2GO |
Bandwidth | 24–24.25 GHz |
ADC sampling | 300 μs [50:3000 μs] |
Slope | 0.83 MHz/μs |
Chirps/frame | 1 [up to 16] |
Samples/chirp | 256 [32,64,128,256] |
Down chirp, standby | 100 μs |
Frame rate | 2000 μs |
Min/max distance | 1 m/20 m (12 m, human subjects) |
Range accuracy (>0.6 m) | ±0.2 m |
Range resolution | 0.9 m |
Field of view | Hz 76°, Ve 19° |
Angle accuracy | ≤5° for ±30° and ≤ 10° for ±65° |
Regime | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) |
---|---|---|---|---|
SPAD | 94.5 | 93.4 | 93.8 | 96.6 |
SPAD | 85.6 | 91.0 | 61.6 | 92.2 |
SPAD | 70.0 | 70.4 | 69.6 | 74.6 |
ToF (Wide FoV) | 67.4 | 64.4 | 75.6 | 60.3 |
SPAD 1P | Accuracy (%) |
---|---|
Depth Only | 50.4 |
Radar Only | 74.6 |
Radar+Depth | 94.5 |
Radar+Depth (TOF 1P) | 67.4 |
SPAD 2P2 | |
Depth Only | 50.2 |
Radar Only | 60.5 |
Radar+Depth | 70.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaul, C.; Mitchell, K.J.; Kassem, K.; Tragakis, A.; Kapitany, V.; Starshynov, I.; Villa, F.; Murray-Smith, R.; Faccio, D. AI-Enabled Sensor Fusion of Time-of-Flight Imaging and mmWave for Concealed Metal Detection. Sensors 2024, 24, 5865. https://doi.org/10.3390/s24185865
Kaul C, Mitchell KJ, Kassem K, Tragakis A, Kapitany V, Starshynov I, Villa F, Murray-Smith R, Faccio D. AI-Enabled Sensor Fusion of Time-of-Flight Imaging and mmWave for Concealed Metal Detection. Sensors. 2024; 24(18):5865. https://doi.org/10.3390/s24185865
Chicago/Turabian StyleKaul, Chaitanya, Kevin J. Mitchell, Khaled Kassem, Athanasios Tragakis, Valentin Kapitany, Ilya Starshynov, Federica Villa, Roderick Murray-Smith, and Daniele Faccio. 2024. "AI-Enabled Sensor Fusion of Time-of-Flight Imaging and mmWave for Concealed Metal Detection" Sensors 24, no. 18: 5865. https://doi.org/10.3390/s24185865
APA StyleKaul, C., Mitchell, K. J., Kassem, K., Tragakis, A., Kapitany, V., Starshynov, I., Villa, F., Murray-Smith, R., & Faccio, D. (2024). AI-Enabled Sensor Fusion of Time-of-Flight Imaging and mmWave for Concealed Metal Detection. Sensors, 24(18), 5865. https://doi.org/10.3390/s24185865