Ultrashort-Echo-Time MRI of the Disco-Vertebral Junction: Modulation of Image Contrast via Echo Subtraction and Echo Times
<p>Conventional sagittal MR imaging of the human lumbar spine performed with (<b>A</b>) spin echo T1-weighted and (<b>B</b>) spin echo T2-weighted sequences. The cartilage endplate at the disco-vertebral junction (interface between vertebral body and intervertebral disc) has low signal intensity and is indistinguishable from the vertebral endplate, the cortical bone of the vertebral body.</p> "> Figure 2
<p>3D Cones (an ultrashort-echo-time, UTE, sequence) images acquired at echo times (TEs) of (<b>A</b>) 0.032 ms, (<b>B</b>) 2.5 ms, (<b>C</b>) 6.7 ms, (<b>D</b>) 11 ms, and (<b>E</b>) 16 ms. The cartilage endplate at the disco-vertebral junction has a high signal intensity in (<b>A</b>), appearing distinct from the adjacent vertebral endplate (VEP) and the intervertebral disc. In later TE source images (<b>B</b>–<b>E</b>), the CEP becomes progressively darker and indistinguishable from the VEP.</p> "> Figure 3
<p>3D Cones subtraction images, acquired by digitally subtracting the 2nd echo image (at various TEs) from the 1st echo image at TE = 0.032 ms. Subtraction images using the 2nd TE of (<b>A</b>) 2.5 ms, (<b>B</b>) 6.7 ms, (<b>C</b>) 11 ms, and (<b>D</b>) 16 ms. By increasing the 2nd TE, visual improvement in the contrast between the cartilage endplate (arrows) and the adjacent vertebral endplate (arrowheads) and nucleus pulposus (dotted line) can be seen.</p> "> Figure 4
<p>Regions of interest for the bony vertebral endplate (VEP), cartilage endplate (CEP), and nucleus pulposus (NP), indicated with arrowheads, arrows, and dotted line, respectively. For each specimen, the average signal intensity within each ROI was determined.</p> "> Figure 5
<p>Contrast-to-noise ratio (CNR) of cartilage endplate (CEP) minus nucleus pulposus (NP) (<b>A</b>,<b>B</b>) and CEP minus vertebral endplate (VEP) (<b>C</b>,<b>D</b>) in the 3D Cones source images (<b>A</b>,<b>C</b>) and subtraction images (<b>B</b>,<b>D</b>), as a function of varying echo times (TEs).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. MR Imaging
2.3. MRI Image Processing
2.4. Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR)
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inoue, H. Three-dimensional architecture of lumbar intervertebral discs. Spine 1981, 6, 139–146. [Google Scholar] [CrossRef]
- Crock, H.V.A.; Goldwasser, M.M. Anatomic studies of the circulation in the region of the vertebral end-plate in adult Greyhound dogs. Spine 1984, 9, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Urban, J.P.; Holm, S.; Maroudas, A. Diffusion of small solutes into the intervertebral disc: As in vitro study. Biorheology 1978, 15, 203–221. [Google Scholar] [CrossRef]
- Urban, J.P.; Holm, S.; Maroudas, A.; Nachemson, A. Nutrition of the intervertebral disc: Effect of fluid flow on solute transport. Clin. Orthop. Relat. Res. 1982, 170, 296–302. [Google Scholar] [CrossRef]
- Siemionow, K.; An, H.; Masuda, K.; Andersson, G.; Cs-Szabo, G. The effects of age, sex, ethnicity, and spinal level on the rate of intervertebral disc degeneration: A review of 1712 intervertebral discs. Spine 2011, 36, 1333–1339. [Google Scholar] [CrossRef]
- Josan, S.; Pauly, J.M.; Daniel, B.L.; Pauly, K.B. Double half RF pulses for reduced sensitivity to eddy currents in UTE imaging. Magn. Reason. Med. 2009, 61, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.D.; Gatehouse, P.D.; Bydder, M.; Bydder, G.M. Magnetic resonance: An introduction to ultrashort TE (UTE) imaging. J. Comput. Assist. Tomogr. 2003, 27, 825–846. [Google Scholar] [CrossRef] [PubMed]
- Techawiboonwong, A.; Song, H.K.; Wehrli, F.W. In vivo MRI of submillisecond T2 species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water. NMR Biomed. 2008, 21, 59–70. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, G.; Ackerman, J.L.; Hrovat, M.I.; Glimcher, M.J.; Snyder, B.D.; Nazarian, A.; Chesler, D.A. Water- and fat-suppressed proton projection MRI (WASPI) of rat femur bone. Magn. Reson. Med. 2007, 57, 554–567. [Google Scholar] [CrossRef]
- Rahmer, J.; Bornert, P.; Groen, J.; Bos, C. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn. Reson. Med. 2006, 55, 1075–1082. [Google Scholar] [CrossRef]
- Weiger, M.; Pruessmann, K.P.; Hennel, F. MRI with zero echo time: Hard versus sweep pulse excitation. Magn. Reson. Med. 2011, 66, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Boada, F.E. Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging. Magn. Reson. Med. 2008, 60, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Idiyatullin, D.; Corum, C.; Park, J.Y.; Garwood, M. Fast and quiet MRI using a swept radiofrequency. J. Magn. Reson. 2006, 181, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Siriwanarangsun, P.; Statum, S.; Biswas, R.; Bae, W.C.; Chung, C.B. Ultrashort time to echo magnetic resonance techniques for the musculoskeletal system. Quant. Imaging Med. Surg. 2016, 6, 731–743. [Google Scholar] [CrossRef]
- Hwang, D.; Kim, S.; Abeydeera, N.A.; Statum, S.; Masuda, K.; Chung, C.B.; Siriwanarangsun, P.; Bae, W.C. Quantitative magnetic resonance imaging of the lumbar intervertebral discs. Quant. Imaging Med. Surg. 2016, 6, 744–755. [Google Scholar] [CrossRef]
- Bae, W.C.; Biswas, R.; Chen, K.; Chang, E.Y.; Chung, C.B. UTE MRI of the Osteochondral Junction. Curr. Radiol. Rep. 2014, 2, 35. [Google Scholar] [CrossRef]
- Chen, K.C.; Tran, B.; Biswas, R.; Statum, S.; Masuda, K.; Chung, C.B.; Bae, W.C. Evaluation of the disco-vertebral junction using ultrashort time-to-echo magnetic resonance imaging: Inter-reader agreement and association with vertebral endplate lesions. Skelet. Radiol. 2016, 45, 1249–1256. [Google Scholar] [CrossRef]
- Bogduk, N.; Endres, S.M. Clinical Anatomy of the Lumbar Spine and Sacrum; Churchill Livingstone: New York, NY, USA, 2005. [Google Scholar]
- Goerner, F.L.; Clarke, G.D. Measuring signal-to-noise ratio in partially parallel imaging MRI. Med. Phys. 2011, 38, 5049–5057. [Google Scholar] [CrossRef]
- Edelstein, W.; Bottomley, P.; Hart, H.; Leue, W.; Schenck, J.; Redington, R. NMR imaging at 5.1 MHz: Work in progress. In International Symposium on NMR Imaging; Witcofski, R., Karstaedt, N., Partain, C., Eds.; Bowman Gray School of Medicine: Winston-Salem, NC, USA, 1982; pp. 139–145. [Google Scholar]
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef]
- McHugh, M.L. Multiple comparison analysis testing in ANOVA. Biochem. Med. 2011, 21, 203–209. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Moon, S.M.; Yoder, J.H.; Wright, A.C.; Smith, L.J.; Vresilovic, E.J.; Elliott, D.M. Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur. Spine J. 2013, 22, 1820–1828. [Google Scholar] [CrossRef]
- Takashima, H.; Yanagida, M.; Imamura, R.; Yoshimoto, M.; Ogon, I.; Nakanishi, M.; Akatsuka, Y.; Okuaki, T.; Yoneyama, M.; Hatakenaka, M.; et al. Optimization of MR signal contrast of the lumbar cartilaginous endplates using ultra-short TE. Appl. Magn. Reson. 2019, 50, 381–389. [Google Scholar] [CrossRef]
- Athertya, J.S.; Lo, J.; Chen, X.; Shin, S.H.; Malhi, B.S.; Jerban, S.; Ji, Y.; Sedaghat, S.; Yoshioka, H.; Du, J.; et al. High contrast cartilaginous endplate imaging in spine using three dimensional dual-inversion recovery prepared ultrashort echo time (3D DIR-UTE) sequence. Skelet. Radiol. 2024, 53, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Li, Y.; Dou, W.; Zhu, Y.; Shi, Y.; Zou, Y. Ultra-short echo time MR imaging in assessing cartilage endplate damage and relationship between its lesion and disc degeneration for chronic low back pain patients. BMC Med. Imaging 2023, 23, 60. [Google Scholar] [CrossRef]
- Finkenstaedt, T.; Siriwananrangsun, P.; Masuda, K.; Bydder, G.M.; Chen, K.C.; Bae, W.C. Ultrashort time-to-echo MR morphology of cartilaginous endplate correlates with disc degeneration in the lumbar spine. Eur. Spine J. 2023, 32, 2358–2367. [Google Scholar] [CrossRef]
- Law, T.; Anthony, M.P.; Chan, Q.; Samartzis, D.; Kim, M.; Cheung, K.M.; Khong, P.L. Ultrashort time-to-echo MRI of the cartilaginous endplate: Technique and association with intervertebral disc degeneration. J. Med. Imaging Radiat. Oncol. 2013, 57, 427–434. [Google Scholar] [CrossRef]
- Bernick, S.; Cailliet, R. Vertebral end-plate changes with aging of human vertebrae. Spine 1982, 7, 97–102. [Google Scholar] [CrossRef]
- Bae, W.C.; Xu, K.; Inoue, N.; Bydder, G.M.; Chung, C.B.; Masuda, K. Ultrashort time-to-echo MRI of human intervertebral disc endplate: Association with endplate calcification. Proc. Intl. Soc. Magn. Reson. Med. 2010, 18, 3218. [Google Scholar]
- Vucevic, D.; Malis, V.; Yamashita, Y.; Mesa, A.; Yamaguchi, T.; Achar, S.; Miyazaki, M.; Bae, W.C. Ultrashort Echo Time and Fast Field Echo Imaging for Spine Bone Imaging with Application in Spondylolysis Evaluation. Computation 2024, 12, 152. [Google Scholar] [CrossRef]
- Azuma, M.; Khant, Z.A.; Yoneyama, M.; Ikushima, I.; Hamanaka, H.; Yokogami, K.; Chosa, E.; Takeshima, H.; Hirai, T. Evaluation of cervical ossification of the posterior longitudinal ligament with 3D broadband IR-prepared ultrashort echo-time imaging: A pilot study. Jpn. J. Radiol. 2021, 39, 487–493. [Google Scholar] [CrossRef] [PubMed]
SNR | CNR | ||||||
---|---|---|---|---|---|---|---|
Sequence | TR [ms] | TE [ms] | CEP | NP | VEP | CEP−NP | CEP−VEP |
SE T1-w | 650 | 10 | 12.4 (0.8) | 16.5 (4.1) | 10.2 (1.3) | −4.1 (4.2) | 2.2 (1.8) |
SE T2-w | 3700 | 100 | 3.8 (1.0) | 7.9 (2.6) | 3.8 (0.9) | −4.1 (2.8) | 0.0 (0.9) |
3D Cones | 50 | 0.03 | 16.7 (3.6) | 15.0 (1.1) | 10.4 (2.2) | 1.8 (3.4) | 6.3 (1.8) |
50 | 2.5 | 13.7 (3.2) | 14.6 (0.8) | 5.7 (1.6) | −0.8 (3.2) | 8.0 (2.2) | |
50 | 7 | 9.2 (2.1) | 12.7 (0.8) | 3.0 (0.8) | −3.4 (2.7) | 6.2 (1.5) | |
50 | 16 | 5.4 (0.9) | 10.3 (0.9) | 1.8 (0.2) | −4.8 (1.8) | 3.6 (0.9) | |
3D Cones Subtraction | TE 1 [ms] | TE 2 [ms] | |||||
0.03 | 2.5 | 2.9 (0.7) | 1.0 (0.4) | 3.7 (1.1) | 1.8 (0.5) | −0.8 (0.6) | |
0.03 | 7 | 6.2 (1.5) | 2.6 (0.6) | 5.7 (1.3) | 3.6 (1.2) | 0.5 (1.3) | |
0.03 | 16 | 9.2 (2.4) | 4.7 (1.0) | 6.7 (1.6) | 4.5 (1.7) | 2.5 (1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.C.; Siriwananrangsun, P.; Bae, W.C. Ultrashort-Echo-Time MRI of the Disco-Vertebral Junction: Modulation of Image Contrast via Echo Subtraction and Echo Times. Sensors 2024, 24, 5842. https://doi.org/10.3390/s24175842
Chen KC, Siriwananrangsun P, Bae WC. Ultrashort-Echo-Time MRI of the Disco-Vertebral Junction: Modulation of Image Contrast via Echo Subtraction and Echo Times. Sensors. 2024; 24(17):5842. https://doi.org/10.3390/s24175842
Chicago/Turabian StyleChen, Karen C., Palanan Siriwananrangsun, and Won C. Bae. 2024. "Ultrashort-Echo-Time MRI of the Disco-Vertebral Junction: Modulation of Image Contrast via Echo Subtraction and Echo Times" Sensors 24, no. 17: 5842. https://doi.org/10.3390/s24175842
APA StyleChen, K. C., Siriwananrangsun, P., & Bae, W. C. (2024). Ultrashort-Echo-Time MRI of the Disco-Vertebral Junction: Modulation of Image Contrast via Echo Subtraction and Echo Times. Sensors, 24(17), 5842. https://doi.org/10.3390/s24175842