Visual Deprivation’s Impact on Dynamic Posture Control of Trunk: A Comprehensive Sensing Information Analysis of Neurophysiological Mechanisms
<p>Experimental Environment Setup: (<b>A</b>) Research equipment and attachment locations. The two green rectangles represent the two arms of the electronic goniometer. (<b>B</b>) Condition setup. In the No-Vision condition, participants wore an eye mask to deprive vision. (<b>C</b>) The curves are from one repetition of one subject’s movement tasks and a time series of measurement indicators. The APA, flexion, switch, and extension phases are classified based on angular velocity and COP-AP baseline values to analyze each measurement indicator. EEG: electroencephalography; EMG: electromyography (Fp1: left side prefrontal, Fp2: right side prefrontal, Cz: center of the parietal, POz: back center of the parietal); RA: rectus abdominis; ES: erector spinae; COP: center of pressure; AP: anterior–posterior; APA: anticipatory postural adjustments.</p> "> Figure 2
<p>Variable importance for classifying conditions with and without visual information. Max: maximum; APA: anticipatory postural adjustments; COP: center of pressure; RA: rectus abdominis; ES: erector spinae; CCI: co-contraction index.</p> "> Figure 3
<p>Scalograms of EEG for each channel in the Vision and No-vision conditions. The scalograms are from one repetition of one subject’s movement tasks. The Fp panels indicate the average of Fp1 and Fp2. The closer the color is to red, the higher the power value in the frequency band; the closer to blue, the lower the power value in the frequency band. Black lines in the figure indicate APA offset (flexion onset), flexion offset, and extension onset, from left to right.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Procedure
2.3. Movement Tasks
2.4. Movement and COP Analysis
2.5. Electromyography
2.6. Electroencephalography
2.7. Statistical Analysis
3. Results
3.1. Variable Importance for Classifying Conditions with and without Visual Information Using Random Forest Analysis
3.2. Comparison of Variables between Vision and No-Vision Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35 (Suppl. S2), ii7–ii11. [Google Scholar] [CrossRef] [PubMed]
- Osumi, M.; Sumitani, M.; Otake, Y.; Nishigami, T.; Mibu, A.; Nishi, Y.; Imai, R.; Sato, G.; Nagakura, Y.; Morioka, S. Kinesiophobia modulates lumbar movements in people with chronic low back pain: A kinematic analysis of lumbar bending and returning movement. Eur. Spine J. 2019, 28, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Shigetoh, H.; Nishi, Y.; Osumi, M.; Morioka, S. Combined abnormal muscle activity and pain-related factors affect disability in patients with chronic low back pain: An association rule analysis. PLoS ONE 2020, 15, e0244111. [Google Scholar] [CrossRef] [PubMed]
- Nishi, Y.; Osumi, M.; Morioka, S. Anticipatory postural adjustments mediate the changes in fear-related behaviors in individuals with chronic low back pain. Scand. J. Pain 2023, 23, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, N.; Aruin, A.S. Aging and balance control in response to external perturbations: Role of anticipatory and compensatory postural mechanisms. Age 2014, 36, 1067–1077. [Google Scholar] [CrossRef]
- Balen’kii, V.Y.; Gurfinkel, V.S.; Paltsev, Y.I. Elements of control of voluntary movement. Biofizika 1967, 12, 135–141. [Google Scholar]
- Haggard, P. Sense of agency in the human brain. Nat. Rev Neurosci. 2017, 18, 196–207. [Google Scholar] [CrossRef]
- Synofzik, M.; Vosgerau, G.; Voss, M. The experience of agency: An interplay between prediction and postdiction. Front. Psychol. 2013, 4, 127. [Google Scholar] [CrossRef]
- Moore, J.W.; Fletcher, P.C. Sense of agency in health and disease: A review of cue integration approaches. Conscious. Cogn. 2012, 21, 59–68. [Google Scholar] [CrossRef]
- Rougier, P. Optimising the visual feedback technique for improving upright stance maintenance by delaying its display: Behavioural effects on healthy adults. Gait Posture 2004, 19, 154–163. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Y.; Wang, J. Effects of vision and cognitive load on anticipatory and compensatory postural control. Hum. Mov. Sci. 2019, 64, 398–408. [Google Scholar] [CrossRef]
- Kluzik, J.; Horak, F.B.; Peterka, R.J. Differences in preferred reference frames for postural orientation shown by after-effects of stance on an inclined surface. Exp. Brain Res. 2005, 162, 474–489. [Google Scholar] [CrossRef]
- Goel, R. Assessing Somatosensory Utilization during Unipedal Postural Control. Front. Syst. Neurosci. 2017, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Borra, D.; Fantozzi, S.; Bisi, M.C.; Magosso, E. Modulations of Cortical Power and Connectivity in Alpha and Beta Bands during the Preparation of Reaching Movements. Sensors 2023, 23, 3530. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.H.; Brown, S.H. Age differences in the control of postural stability during reaching tasks. Gait Posture 2013, 38, 837–842. [Google Scholar] [CrossRef]
- Lopez-Valenciano, A.; Biviá-Roig, G.; Lison-Parraga, J.; Vera-Garcia, F. Electromyographic study of trunk flexion exercises on inclined board. Rev. Int. Med. Cienc. Act. Fis. Deporte 2013, 13, 657–671. [Google Scholar]
- Roy, A.L.; Keller, T.S.; Colloca, C.J. Posture-dependent trunk extensor EMG activity during maximum isometrics exertions in normal male and female subjects. J. Electromyogr. Kinesiol. 2003, 13, 469–476. [Google Scholar] [CrossRef]
- Falconer, K.; Winter, D.A. Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr. Clin. Neurophysiol. 1985, 25, 135–149. [Google Scholar] [PubMed]
- Panagiotis, P.C.; Drosou, A.A.; Viriri, E.S. Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 186–195. [Google Scholar]
- Berlucchi, G.; Vallar, G. The history of the neurophysiology and neurology of the parietal lobe. Handb. Clin. Neurol. 2018, 151, 3–30. [Google Scholar] [CrossRef]
- Loh, W.Y.; Zhou, P. Variable Importance Scores. J. Data Sci. 2021, 19, 569–592. [Google Scholar] [CrossRef]
- Vaugoyeau, M.; Viel, S.; Amblard, B.; Azulay, J.P.; Assaiante, C. Proprioceptive contribution of postural control as assessed from very slow oscillations of the support in healthy humans. Gait Posture 2008, 27, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.C.; Dichgans, J.; Bruzek, W.; Selinka, H. Stabilization of human posture during induced oscillations of the body. Exp. Brain Res. 1982, 45, 126–132. [Google Scholar] [CrossRef]
- Fujiwara, K.; Miyaguchi, A.; Toyama, H.; Kunita, K.; Asai, H. Starting position of movement and perception of angle of trunk flexion while standing with eyes closed. Percept. Mot. Ski. 1999, 89, 279–293. [Google Scholar] [CrossRef]
- Bazrgari, B.; Shirazi-Adl, A.; Trottier, M.; Mathieu, P. Computation of trunk equilibrium and stability in free flex-ion-extension movements at different velocities. J. Biomech. 2008, 41, 412–421. [Google Scholar] [CrossRef]
- Takakura, H.; Nishijo, H.; Ishikawa, A.; Shojaku, H. Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System. Front. Hum. Neurosci. 2015, 9, 620. [Google Scholar] [CrossRef]
- Passarelli, L.; Gamberini, M.; Fattori, P. The superior parietal lobule of primates: A sensory-motor hub for interaction with the environment. J. Integr. Neurosci. 2021, 20, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Tain, R.; Sharp, K.G.; Glynn, L.M.; Van Dillen, L.R.; Henslee, K.; Jacobs, J.V.; Cramer, S.C. Identifying the neural correlates of anticipatory postural control: A novel fMRI paradigm. Hum. Brain Mapp. 2023, 44, 4088–4100. [Google Scholar] [CrossRef]
- McGuire, L.M.; Sabes, P.N. Heterogeneous representations in the superior parietal lobule are common across reaches to visual and proprioceptive targets. J. Neurosci. 2011, 31, 6661–6673. [Google Scholar] [CrossRef]
- Berchicci, M.; Russo, Y.; Bianco, V.; Quinzi, F.; Rum, L.; Macaluso, A.; Committeri, G.; Vannozzi, G.; Di Russo, F. Stepping forward, stepping backward: A movement-related cortical potential study unveils distinctive brain activities. Behav. Brain Res. 2020, 388, 112663. [Google Scholar] [CrossRef]
- Tomov, M.S.; Truong, V.Q.; Hundia, R.A.; Gershman, S.J. Dissociable neural correlates of uncertainty underlie different exploration strategies. Nat. Commun. 2020, 11, 2371. [Google Scholar] [CrossRef]
- Koechlin, E. Prefrontal executive function and adaptive behavior in complex environments. Curr. Opin. Neurobiol. 2016, 37, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Forbes, P.A.; Chen, A.; Blouin, J.S. Sensorimotor control of standing balance. Handb. Clin. Neurol. 2018, 159, 61–83. [Google Scholar] [CrossRef]
- Ludwig, O.; Kelm, J.; Hammes, A.; Schmitt, E.; Fröhlich, M. Neuromuscular performance of balance and posture control in childhood and adolescence. Heliyon 2020, 6, e04541. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J. Sensorimotor integration in human postural control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, H.; Heidger, F.; Schniepp, R.; MacNeilage, P.R.; Glasauer, S.; Wuehr, M. Head motion predictability explains activity-dependent suppression of vestibular balance control. Sci. Rep. 2020, 10, 668. [Google Scholar] [CrossRef]
- Llanos, C.; Rodriguez, M.; Rodriguez-Sabate, C.; Morales, I.; Sabate, M. Mu-rhythm changes during the planning of motor and motor imagery actions. Neuropsychologia 2013, 51, 1019–1026. [Google Scholar] [CrossRef]
Kinematics/Kinetics index |
Overall maximum trunk flexion angle |
Overall maximum trunk flexion angular velocity |
Overall maximum trunk extension angular velocity |
Overall maximum COP-AP displacement during APA phase |
Overall maximum COP-AP displacement during trunk flexion movement |
EMG index |
APA phase RA mean muscle activity |
Flexion phase RA mean muscle activity |
Switch phase RA mean muscle activity |
Extension phase RA mean muscle activity |
APA phase ES mean muscle activity |
Flexion phase ES mean muscle activity |
Switch phase ES mean muscle activity |
Extension phase ES mean muscle activity |
APA phase mean CCI |
Flexion phase mean CCI |
Switch phase mean CCI |
Extension phase mean CCI |
EEG index |
APA phase Fp α/β ratio |
Flexion phase Fp α/β ratio |
Switch phase Fp α/β ratio |
Extension phase Fp α/β ratio |
APA phase Cz α/β ratio |
Flexion phase Cz α/β ratio |
Switch phase Cz α/β ratio |
Extension phase Cz α/β ratio |
APA phase POz α/β ratio |
Flexion phase POz α/β ratio |
Switch phase POz α/β ratio |
Extension phase POz α/β ratio |
Vision | No-Vision | p-Value | |
---|---|---|---|
Kinematics/Kinetics index | |||
Maximum trunk flexion angle (°) | 48.8 (44.7–57.5) | 46.6 (41.0–53.8) | <0.001 |
Maximum trunk flexion angular velocity (degree/s) | 80.5 (66.6–96.1) | 89.7 (69.6–113.6) | <0.001 |
Maximum COP-AP displacement during APA phase (mm) | 7.0 (4.4–10.6) | 6.6 (4.5–10.6) | 0.35 |
Maximum COP-AP displacement during trunk flexion movement (mm) | 47.4 (33.8–67.0) | 35.0 (22.6–55.2) | <0.001 |
EMG index | |||
APA phase RA mean muscle activity (%) | 152 (111–244) | 142 (112–196) | 0.59 |
APA phase ES mean muscle activity (%) | 645 (518–785) | 633 (507–797) | 0.91 |
APA phase mean CCI ratio | 0.5 (0.4–0.5) | 0.5 (0.4–0.5) | 0.86 |
EEG index | |||
APA phase POz α/β ratio | 1.0 (0.9–1.2) | 1.1 (0.9–1.3) | 0.57 |
Switch phase POz α/β ratio | 1.0 (0.8–1.1) | 1.1 (0.9–1.4) | 0.047 |
Extension phase Fp α/β ratio | 1.0 (0.7–1.3) | 1.1 (0.9–1.8) | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, A.; Nagae, H.; Furusaka, Y.; Yasukawa, K.; Shigetoh, H.; Kodama, T.; Miyazaki, J. Visual Deprivation’s Impact on Dynamic Posture Control of Trunk: A Comprehensive Sensing Information Analysis of Neurophysiological Mechanisms. Sensors 2024, 24, 5849. https://doi.org/10.3390/s24175849
Sasaki A, Nagae H, Furusaka Y, Yasukawa K, Shigetoh H, Kodama T, Miyazaki J. Visual Deprivation’s Impact on Dynamic Posture Control of Trunk: A Comprehensive Sensing Information Analysis of Neurophysiological Mechanisms. Sensors. 2024; 24(17):5849. https://doi.org/10.3390/s24175849
Chicago/Turabian StyleSasaki, Anna, Honoka Nagae, Yukio Furusaka, Kei Yasukawa, Hayato Shigetoh, Takayuki Kodama, and Junya Miyazaki. 2024. "Visual Deprivation’s Impact on Dynamic Posture Control of Trunk: A Comprehensive Sensing Information Analysis of Neurophysiological Mechanisms" Sensors 24, no. 17: 5849. https://doi.org/10.3390/s24175849
APA StyleSasaki, A., Nagae, H., Furusaka, Y., Yasukawa, K., Shigetoh, H., Kodama, T., & Miyazaki, J. (2024). Visual Deprivation’s Impact on Dynamic Posture Control of Trunk: A Comprehensive Sensing Information Analysis of Neurophysiological Mechanisms. Sensors, 24(17), 5849. https://doi.org/10.3390/s24175849