The Improvement of Density Peaks Clustering Algorithm and Its Application to Point Cloud Segmentation of LiDAR
<p>An example of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> curve.</p> "> Figure 2
<p>An illustration of voxel structure. (<b>a</b>) The whole voxel structure. (<b>b</b>) One voxel.</p> "> Figure 3
<p>An example of the curve fitting. (<b>a</b>) Curve fitting with the first <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>0</mn> </msub> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mi>m</mi> </msub> </mrow> </semantics></math>. (<b>b</b>) Curve fitting with whole <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mi>m</mi> </msub> </mrow> </semantics></math> and the part of the curve near the inflection point.</p> "> Figure 4
<p>An example of the clustering results. (<b>a</b>) The clustering results obtained by the merging strategy of the basic DPC. (<b>b</b>) The clustering results obtained by the new merging strategy.</p> "> Figure 5
<p>The flowchart of the improved DPC algorithm.</p> "> Figure 6
<p>LiDAR MID-70. (<b>a</b>) The photo of MID-70. (<b>b</b>) The FoV of MID-70.</p> "> Figure 7
<p>Experimental results of Scene 1. (<b>a</b>) The photo of the scene. (<b>b</b>) The point cloud of ROI. (<b>c</b>) The correct segmentation. (<b>d</b>) K-means. (<b>e</b>) Voxel + K-means. (<b>f</b>) DBSCAN. (<b>g</b>) Voxel + DBSCAN. (<b>h</b>) DPC. (<b>i</b>) Voxel + DPC. (<b>j</b>) The new improved DPC.</p> "> Figure 8
<p>Experimental results of Scene 2. (<b>a</b>) The photo of the scene. (<b>b</b>) The point cloud of ROI. (<b>c</b>) The correct segmentation. (<b>d</b>) K-means. (<b>e</b>) Voxel + K-means. (<b>f</b>) DBSCAN. (<b>g</b>) Voxel + DBSCAN. (<b>h</b>) DPC. (<b>i</b>) Voxel + DPC. (<b>j</b>) The new improved DPC.</p> "> Figure 9
<p>Experimental results of Scene 3. (<b>a</b>) The photo of the scene. (<b>b</b>) The point cloud of ROI. (<b>c</b>) The correct segmentation. (<b>d</b>) K-means. (<b>e</b>) Voxel + K-means. (<b>f</b>) DBSCAN. (<b>g</b>) Voxel + DBSCAN. (<b>h</b>) DPC. (<b>i</b>) Voxel + DPC. (<b>j</b>) The new improved DPC.</p> "> Figure 9 Cont.
<p>Experimental results of Scene 3. (<b>a</b>) The photo of the scene. (<b>b</b>) The point cloud of ROI. (<b>c</b>) The correct segmentation. (<b>d</b>) K-means. (<b>e</b>) Voxel + K-means. (<b>f</b>) DBSCAN. (<b>g</b>) Voxel + DBSCAN. (<b>h</b>) DPC. (<b>i</b>) Voxel + DPC. (<b>j</b>) The new improved DPC.</p> ">
Abstract
:1. Introduction
- A new effective and automatic clustering algorithm is proposed by improving DPC, and the DPC-based algorithm is introduced to point cloud segmentation, which provides a new choice and useful reference for researchers in the field.
- Compared with DPC, the improved DPC avoids the manually set cut-off distance, simplifies the calculation of local density by forming a voxel structure, and selects cluster centers automatically by calculating the analytical solution of the inflection point of the fitted gamma () curve. Additionally, the improved DPC adopts a new merging strategy to overcome the over-segmentation problem of point clouds.
2. Related Works
3. The Improved DPC Algorithm
3.1. New Approach to Obtain
3.2. New Approach to Select Cluster Centers Automatically
- (1)
- Calculate by Equation (4);
- (2)
- Sort in decreasing order and mark it as ;
- (3)
- Fit the curve by using the first ;
- (4)
- Find the point of maximum curvature and obtain the value of by Equation (9);
- (5)
- Select the corresponding voxels whose are greater than as cluster centers.
Algorithm 1: Automatic determination of cluster centers |
1: Input: local density of voxel , delta-distance 2: Output: cluster centers 3: for do 4: 5: end for 6: Sort in the decreasing order, output 7: Fit the curve where { 8: Calculate by Equation (9) 9: 10: for do 11: if then 12: 13: else 14: break 15: end if 16: end for |
3.3. New Merging Strategy
- (1)
- Each unclassified voxel is assigned to the same cluster as its nearest neighbor with a higher density;
- (2)
- To overcome the over-segmentation problem, a merging criterion is introduced to determine whether the clusters need to be merged. The merging criterion in this work includes two aspects: (i) If the distance between a voxel in cluster A and any voxel in cluster B is less than a distance , the two voxels are regarded as a neighbor voxel pair. (ii) If the number of neighbor voxel pairs is greater than a number , the two clusters (cluster A and cluster B) will be merged. In the practical merging process, we do not need to calculate the Euclidean distance between two voxels. We only need to compare the coordinate differences of each dimension between two voxels. If the three coordinate differences are all less than , the two voxels are regarded as a neighbor voxel pair. The is set as several times of the side length of voxels . If the number of the neighbor voxel pairs is greater than , there exist over-segmented clusters that should be merged. Otherwise, the two clusters will not be merged;
- (3)
- The points in each voxel are assigned to the cluster of the corresponding voxel, and the final clustering result is obtained.
3.4. The Flow Chart of the Improved DPC Algorithm
4. Experiment and Discussion
4.1. The Experimental Setup
4.2. Experimental Results and Discussion
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pitafi, S.; Anwar, T.; Sharif, Z. A Taxonomy of Machine Learning Clustering Algorithms, Challenges, and Future Realms. Appl. Sci. 2023, 13, 3529. [Google Scholar] [CrossRef]
- Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.T. A Review of Clustering Techniques and Developments. Neurocomputing 2017, 267, 664–681. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y. Review of clustering algorithms. J. Comput. Appl. 2019, 39, 1869–1882. [Google Scholar]
- Mahadevkar, S.V.; Khemani, B.; Patil, S.; Kotecha, K.; Vora, D.R.; Abraham, A.; Gabralla, L.A. A Review on Machine Learning Styles in Computer Vision—Techniques and Future Directions. IEEE Access 2022, 10, 107293–107329. [Google Scholar] [CrossRef]
- Merdassi, H.; Barhoumi, W.; Zagrouba, E. A Comprehensive Overview of Relevant Methods of Image Cosegmentation. Expert Syst. Appl. 2020, 140, 112901. [Google Scholar] [CrossRef]
- Adnan, M.; Slavic, G.; Martin Gomez, D.; Marcenaro, L.; Regazzoni, C. Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications. Sensors 2023, 23, 6119. [Google Scholar] [CrossRef]
- Wang, X.; Yan, Y.; Gu, X. Spot Welding Robot Path Planning Using Intelligent Algorithm. J. Manuf. Process. 2019, 42, 1–10. [Google Scholar] [CrossRef]
- Höglund, M.; Bernardo, C.; Sjödahl, G.; Eriksson, P.; Axelson, H.; Liedberg, F. The Lund Taxonomy for Bladder Cancer Classification—From Gene Expression Clustering to Cancer Cell Molecular Phenotypes, and Back Again. J. Pathol. 2023, 259, 369–375. [Google Scholar] [CrossRef]
- Xu, J.; Cui, L.; Zhuang, J.; Meng, Y.; Bing, P.; He, B.; Tian, G.; Kwok Pui, C.; Wu, T.; Wang, B.; et al. Evaluating the Performance of Dropout Imputation and Clustering Methods for Single-Cell RNA Sequencing Data. Comput. Biol. Med. 2022, 146, 105697. [Google Scholar] [CrossRef]
- Fluke, C.J.; Jacobs, C. Surveying the Reach and Maturity of Machine Learning and Artificial Intelligence in Astronomy. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1349. [Google Scholar] [CrossRef]
- Cerulo, P. CALSAGOS: Clustering Algorithms Applied to Galaxies in overdense Systems. Mon. Notices Royal Astron. Soc. 2023, 4182, 4171–4182. [Google Scholar]
- Koot, M.; Mes, M.R.K.; Iacob, M.E. A Systematic Literature Review of Supply Chain Decision Making Supported by the Internet of Things and Big Data Analytics. Comput. Ind. Eng. 2021, 154, 107076. [Google Scholar] [CrossRef]
- Saha, R.; Tariq, M.T.; Hadi, M.; Xiao, Y. Pattern Recognition Using Clustering Analysis to Support Transportation System Management, Operations, and Modeling. J. Adv. Transp. 2019, 2019, 1628417. [Google Scholar] [CrossRef]
- Zimmermann, A. Method Evaluation, Parameterization, and Result Validation in Unsupervised Data Mining: A Critical Survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1330. [Google Scholar] [CrossRef]
- Rodriguez, A.; Laio, A. Clustering by Fast Search and Find of Density Peaks. Science. 2014, 344, 1492–1496. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tang, S.; Pei, S.; Wang, C.; Du, J.; Xiong, N. DHeat: A Density Heat-Based Algorithm for Clustering with Effective Radius. IEEE Trans. Syst. Man, Cybern. Syst. 2018, 48, 649–660. [Google Scholar] [CrossRef]
- Hou, J.; Pelillo, M. A New Density Kernel in Density Peak Based Clustering. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 468–473. [Google Scholar]
- Zeng, S.; Wang, Q.; Wang, S.; Liu, P. Shadow Detection of Soil Image Based on Density Peak Clustering and Histogram Fitting. J. Intell. Fuzzy Syst. 2022, 43, 2963–2971. [Google Scholar] [CrossRef]
- Yan, M.; Chen, Y.; Chen, Y.; Zeng, G.; Hu, X.; Du, J. A Lightweight Weakly Supervised Learning Segmentation Algorithm for Imbalanced Image Based on Rotation Density Peaks. Knowl.-Based Syst. 2022, 244, 108513. [Google Scholar] [CrossRef]
- Yan, M.; Chen, Y.; Hu, X.; Cheng, D.; Chen, Y.; Du, J. Intrusion Detection Based on Improved Density Peak Clustering for Imbalanced Data on Sensor-Cloud Systems. J. Syst. Archit. 2021, 118, 102212. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, X.; Wang, T.; Du, K.; Fu, C. An Adaptive Ellipse Distance Density Peak Fuzzy Clustering Algorithm Based on the Multi-Target Traffic Radar. Sensors 2020, 20, 4920. [Google Scholar] [CrossRef]
- Xu, J.; Wang, G.; Deng, W. DenPEHC: Density Peak Based Efficient Hierarchical Clustering. Inf. Sci. 2016, 373, 200–218. [Google Scholar] [CrossRef]
- Yaohui, L.; Zhengming, M.; Fang, Y. Adaptive Density Peak Clustering Based on K-Nearest Neighbors with Aggregating Strategy. Knowl.-Based Syst. 2017, 133, 208–220. [Google Scholar] [CrossRef]
- Wang, X.F.; Xu, Y. Fast Clustering Using Adaptive Density Peak Detection. Stat. Methods Med. Res. 2017, 26, 2800–2811. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Gao, H.; Xie, W.; Liu, X.; Grant, P.W. Robust Clustering by Detecting Density Peaks and Assigning Points Based on Fuzzy Weighted K-Nearest Neighbors. Inf. Sci. 2016, 354, 19–40. [Google Scholar] [CrossRef]
- Bie, R.; Mehmood, R.; Ruan, S.; Sun, Y.; Dawood, H. Adaptive Fuzzy Clustering by Fast Search and Find of Density Peaks. Pers. Ubiquitous Comput. 2016, 20, 785–793. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, P. Delta-Density Based Clustering with a Divide-and-Conquer Strategy: 3DC Clustering. Pattern Recognit. Lett. 2016, 73, 52–59. [Google Scholar] [CrossRef]
- Anand, B.; Senapati, M.; Barsaiyan, V.; Rajalakshmi, P. LiDAR-INS/GNSS-Based Real-Time Ground Removal, Segmentation, and Georeferencing Framework for Smart Transportation. IEEE Trans. Instrum. Meas. 2021, 70, 8504611. [Google Scholar] [CrossRef]
- Du, X.; Lu, Y.; Chen, Q. A Fast Multiplane Segmentation Algorithm for Sparse 3-D LiDAR Point Clouds by Line Segment Grouping. IEEE Trans. Instrum. Meas. 2023, 72, 8501015. [Google Scholar] [CrossRef]
- Zhou, P.; Guo, X.; Pei, X.; Chen, C. T-LOAM: Truncated Least Squares LiDAR-Only Odometry and Mapping in Real Time. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5701013. [Google Scholar] [CrossRef]
- Kong, D.; Xu, L.; Li, X.; Li, S. K-Plane-Based Classification of Airborne LiDAR Data for Accurate Building Roof Measurement. IEEE Trans. Instrum. Meas. 2014, 63, 1200–1214. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Huang, X. A Technical Survey and Evaluation of Traditional Point Cloud Clustering Methods for LiDAR Panoptic Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Montreal, QC, Canada, 11–17 October 2021; pp. 2464–2473. [Google Scholar]
- Yang, S.; Hou, M.; Li, S. Three-Dimensional Point Cloud Semantic Segmentation for Cultural Heritage: A Comprehensive Review. Remote Sens. 2023, 15, 548. [Google Scholar] [CrossRef]
- Thomas, G.B. Thomas’ Calculus, 14th ed.; Pearson Education Inc.: Boston, MA, USA, 2017; pp. 771–775. [Google Scholar]
- Sauer, T. Numerical Analysis, 2nd ed.; Pearson Education Inc.: Boston, MA, USA, 2012; p. 50. [Google Scholar]
- Lin, J.; Zhang, F. Loam Livox: A Fast, Robust, High-Precision LiDAR Odometry and Mapping Package for LiDARs of Small FoV. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 3126–3131. [Google Scholar]
- Zhou, Q.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847. [Google Scholar]
K-Means | Voxel + K-Means | DBSCAN | Voxel + DBSCAN | DPC | Voxel + DPC | New Method | |
---|---|---|---|---|---|---|---|
Scene 1 (2811) | 0.756 | 0.751 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Scene 2 (6197) | 0.560 | 0.612 | 0.963 | 0.963 | 0.715 | 0.747 | 0.963 |
Scene 3 (12,444) | 0.731 | 0.745 | 0.997 | 0.997 | 0.834 | 0.800 | 0.998 |
K-Means | Voxel + K-Means | DBSCAN | Voxel + DBSCAN | DPC | Voxel + DPC | New Method | |
---|---|---|---|---|---|---|---|
Scene 1 (2811) | 0.486 | 0.480 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Scene 2 (6197) | 0.430 | 0.438 | 0.912 | 0.912 | 0.472 | 0.500 | 0.912 |
Scene 3 (12,444) | 0.716 | 0.717 | 0.990 | 0.993 | 0.785 | 0.747 | 0.997 |
K-Means | Voxel + K-Means | DBSCAN | Voxel + DBSCAN | DPC | Voxel + DPC | New Method | |
---|---|---|---|---|---|---|---|
Scene 1 (2811) | 0.080 | 0.002 | 0.030 | 0.003 | 0.535 | 0.017 | 0.014 |
Scene 2 (6197) | 0.085 | 0.004 | 0.078 | 0.009 | 2.721 | 0.125 | 0.068 |
Scene 3 (12,444) | 0.104 | 0.014 | 0.202 | 0.033 | 12.679 | 0.629 | 0.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Fang, X.; Jiang, Y.; Ji, H.; Wang, B.; Huang, Z. The Improvement of Density Peaks Clustering Algorithm and Its Application to Point Cloud Segmentation of LiDAR. Sensors 2024, 24, 5693. https://doi.org/10.3390/s24175693
Wang Z, Fang X, Jiang Y, Ji H, Wang B, Huang Z. The Improvement of Density Peaks Clustering Algorithm and Its Application to Point Cloud Segmentation of LiDAR. Sensors. 2024; 24(17):5693. https://doi.org/10.3390/s24175693
Chicago/Turabian StyleWang, Zheng, Xintong Fang, Yandan Jiang, Haifeng Ji, Baoliang Wang, and Zhiyao Huang. 2024. "The Improvement of Density Peaks Clustering Algorithm and Its Application to Point Cloud Segmentation of LiDAR" Sensors 24, no. 17: 5693. https://doi.org/10.3390/s24175693
APA StyleWang, Z., Fang, X., Jiang, Y., Ji, H., Wang, B., & Huang, Z. (2024). The Improvement of Density Peaks Clustering Algorithm and Its Application to Point Cloud Segmentation of LiDAR. Sensors, 24(17), 5693. https://doi.org/10.3390/s24175693