Hyperspectral Anomaly Detection Based on Spectral Similarity Variability Feature
<p>False-color image and target position of experimental data.</p> "> Figure 2
<p>The overall flow chart.</p> "> Figure 3
<p>The flow chart of pre-processing.</p> "> Figure 4
<p>Similar feature fusion based on autoencoder.</p> "> Figure 5
<p>SSVF extraction model.</p> "> Figure 6
<p>Performance comparison of the 3D ROC of different methods on D<sub>1</sub>. (<b>a</b>) Three-dimensional ROC curves. (<b>b</b>) Corresponding 2D ROC curves (P<sub>D</sub>,P<sub>F</sub>). (<b>c</b>) Corresponding 2D ROC curves (P<sub>D</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>). (<b>d</b>) Corresponding 2D ROC curves (P<sub>F</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>).</p> "> Figure 7
<p>Performance comparison of the 3D ROC of different methods on D<sub>2</sub>. (<b>a</b>) Three-dimensional ROC curves. (<b>b</b>) Corresponding 2D ROC curves (P<sub>D</sub>,P<sub>F</sub>). (<b>c</b>) Corresponding 2D ROC curves (P<sub>D</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>). (<b>d</b>) Corresponding 2D ROC curves (P<sub>F</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>).</p> "> Figure 8
<p>Performance comparison of the 3D ROC of different methods on D<sub>3</sub>. (<b>a</b>) Three-dimensional ROC curves. (<b>b</b>) Corresponding 2D ROC curves (P<sub>D</sub>,P<sub>F</sub>). (<b>c</b>) Corresponding 2D ROC curves (P<sub>D</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>). (<b>d</b>) Corresponding 2D ROC curves (P<sub>F</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>).</p> "> Figure 9
<p>Performance comparison of the 3D ROC of different methods on D<sub>4</sub>. (<b>a</b>) Three-dimensional ROC curves. (<b>b</b>) Corresponding 2D ROC curves (P<sub>D</sub>,P<sub>F</sub>). (<b>c</b>) Corresponding 2D ROC curves (P<sub>D</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>). (<b>d</b>) Corresponding 2D ROC curves (P<sub>F</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>).</p> "> Figure 10
<p>Performance comparison of the 3D ROC of different methods on D<sub>5</sub>. (<b>a</b>) Three-dimensional ROC curves. (<b>b</b>) Corresponding 2D ROC curves (P<sub>D</sub>,P<sub>F</sub>). (<b>c</b>) Corresponding 2D ROC curves (P<sub>D</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>). (<b>d</b>) Corresponding 2D ROC curves (P<sub>F</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>).</p> "> Figure 11
<p>Performance comparison of the 3D ROC of different methods on D<sub>6</sub>. (<b>a</b>) Three-dimensional ROC curves. (<b>b</b>) Corresponding 2D ROC curves (P<sub>D</sub>,P<sub>F</sub>). (<b>c</b>) Corresponding 2D ROC curves (P<sub>D</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>). (<b>d</b>) Corresponding 2D ROC curves (P<sub>F</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>).</p> "> Figure 12
<p>Performance comparison of the 3D ROC of different methods on D<sub>7</sub>. (<b>a</b>) Three-dimensional ROC curves. (<b>b</b>) Corresponding 2D ROC curves (P<sub>D</sub>,P<sub>F</sub>). (<b>c</b>) Corresponding 2D ROC curves (P<sub>D</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>). (<b>d</b>) Corresponding 2D ROC curves (P<sub>F</sub>,<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">τ</mi> </mrow> </semantics></math>).</p> "> Figure 13
<p>Comparison of SSA of different methods on different datasets.</p> "> Figure 13 Cont.
<p>Comparison of SSA of different methods on different datasets.</p> "> Figure 13 Cont.
<p>Comparison of SSA of different methods on different datasets.</p> "> Figure 14
<p>Detection results of different methods on different datasets.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Data Description
- (1)
- D1 and D2 are from the Remote Sensing and Image Processing Group (RSIPG) repository [27], captured at an altitude of 1200 m on a sunny day. D1 is the full image, while D2 is a cropped portion containing an anomaly. Both datasets have undergone residual stripe removal, and D1 has been further processed with noise whitening and partial spectral discarding.
- (2)
- D3 and D4 are from the San Diego Airport, with the anomaly target being aircraft.
- (3)
- D5 is from the Digital Imaging and Remote Sensing (DIRS) laboratory, which is part of the Chester F. Carlson Center for Imaging Science at the Rochester Institute of Technology.
- (4)
- The high-spectral datasets D6 and D7 are from the personal website of Xudong Kang, School of Electrical and Information Engineering, Hunan University. The original images were downloaded from the AVIRIS website [28]. The authors extracted 100 × 100 sub-images and applied a noise level estimation method to remove the noisy bands.
Data Set Name | Hyperspectral Imaging Sensor | Collected Location | Spectral Range | Spectral Resolution | Spatial Resolution | Size of Origin Image | Size of Sub-Image | The Original Number of Bands | Number of Bands after Processing |
---|---|---|---|---|---|---|---|---|---|
(m) | Pixel | Pixel | |||||||
D1 | VNIR-SIM.GA | Parking lot in suburban vegetated | 0.40–1.00 | 1.2 | 0.6 | 375 × 450 | 375 × 450 | 511 | 127 |
D2 | 200 × 100 | 511 | 511 | ||||||
D3 | AVIRIS | San Diego | 0.36~2.50 | 9.0 | 3.0 | 400 × 400 | 80 × 80 | 224 | 126 |
D4 | 60 × 60 | ||||||||
D5 | ProSpecTIR-VS2 sensor | Avon, NY. | 0.39~2.45 | 5.0 | 1.0 | -- | 120 × 80 | 360 | 360 |
D6 | AVIRIS | Los Angeles | 0.36–2.50 | 9.0 | 7.1 | 100 × 100 | 100 × 100 | 224 | 205 |
D7 |
2.2. Hyperspectral Anomaly Detection Based on Spectral Similar Variability Feature
2.2.1. Data Pre-Processing
2.2.2. Similar Feature Fusion Based on Autoencoder
2.2.3. Spectral Similar Variability Feature
2.2.4. Spectral Similar Variability Feature Extraction Based on Residual Autoencoder
3. Experimental Result
3.1. Comparison Algorithm
3.2. Parameter Selection
- (1)
- The first parameter to be adjusted is (the number of K neighbors). Because the number of K neighbors directly affects the dimension of input data in the phase of similar feature fusion, the value of should not be too large in order for it not to affect the computational efficiency. Take D3 as an example, as shown in Table 2, when = 9, the anomaly detection accuracy reaches its maximum. However, if = 9, then, when the data set dimension is 511, the input data dimension will be as high as 4599, which will affect the computational efficiency of the algorithm. Therefore, is set to 5 at this stage.
- (2)
- In order to ensure the stability of detection results, when the network reaches the convergence state, the error of detection performance is small. The hyperparameters can be adjusted to control the degree and speed of network convergence and avoid falling into a local optimum in the following ways:
- (3)
- n0 is the implicit layer dimension of the residual autoencoder. The mapping direction of the hyperspectral image is controlled by adjusting n0. Different mapping spaces affect the separability of different features. Based on experience, this is usually set to n − 20, where n is the original data dimension.
- (4)
- n1 is the dimension of the last layer of the residual network. As the algorithm needs to obtain the difference between similar fusion features and the original data, it must be consistent with the original image dimension.
3.3. Experimental Results
- (1)
- Background suppressibility (BS): AUC(F,τ) and AUCBS correlate with BS capacity.
D1 | AUC(D,F)↑ | AUC(D,τ)↑ | AUC(F,τ)↓ | AUCTD↑ | AUCBS↑ | AUCSNPR↑ | AUCTDBS↑ | AUCODP↑ |
---|---|---|---|---|---|---|---|---|
GRXD | 0.8688 | 0.0903 | 0.0148 | 0.9591 | 0.8540 | 6.1026 | 0.0755 | 0.9443 |
PCA | 0.8794 | 0.0912 | 0.0127 | 0.9706 | 0.8667 | 7.1904 | 0.0785 | 0.9579 |
PCRE | 0.7000 | 0.1924 | 0.1131 | 0.8924 | 0.5869 | 1.7016 | 0.0793 | 0.7793 |
ADAE | 0.6972 | 0.1779 | 0.0134 | 0.8750 | 0.6838 | 13.3162 | 0.1645 | 0.8617 |
FrFE | 0.8506 | 0.0846 | 0.0132 | 0.9352 | 0.8373 | 6.3933 | 0.0714 | 0.9219 |
LSDMMoG | 0.8164 | 0.1960 | 0.0725 | 1.0124 | 0.7440 | 2.7039 | 0.1235 | 0.9399 |
IEEPST | 0.6724 | 0.0529 | 0.0002 | 0.7253 | 0.6722 | 321.4102 | 0.0527 | 0.7251 |
CTAD | 0.6146 | 0.1481 | 0.0043 | 0.7627 | 0.6103 | 34.4880 | 0.1438 | 0.7584 |
GAED | 0.7070 | 0.2073 | 0.0410 | 0.9143 | 0.6660 | 5.0568 | 0.1663 | 0.8733 |
SSVFRX | 0.8826 | 0.0992 | 0.0076 | 0.9818 | 0.8750 | 13.1049 | 0.0917 | 0.9743 |
D2 | AUC(D,F)↑ | AUC(D,τ)↑ | AUC(F,τ)↓ | AUCTD↑ | AUCBS↑ | AUCSNPR↑ | AUCTDBS↑ | AUCODP↑ |
---|---|---|---|---|---|---|---|---|
GRXD | 0.5667 | 0.1394 | 0.0900 | 0.7061 | 0.4768 | 1.5490 | 0.0494 | 0.6161 |
PCA | 0.5714 | 0.1326 | 0.0820 | 0.7039 | 0.4894 | 1.6173 | 0.0506 | 0.6220 |
PCRE | 0.6666 | 0.0573 | 0.0087 | 0.7240 | 0.6580 | 6.6090 | 0.0487 | 0.7153 |
ADAE | 0.7674 | 0.0082 | 0.0014 | 0.7756 | 0.7660 | 6.0602 | 0.0069 | 0.7743 |
FrFE | 0.5903 | 0.0971 | 0.0513 | 0.6874 | 0.5389 | 1.8906 | 0.0457 | 0.6360 |
LSDMMoG | 0.6461 | 0.1630 | 0.0931 | 0.8091 | 0.5530 | 1.7513 | 0.0699 | 0.7160 |
IEEPST | 0.6519 | 0.0009 | 0.0009 | 0.6528 | 0.6510 | 1.0352 | 0.0000 | 0.6520 |
CTAD | 0.5694 | 0.0372 | 0.0380 | 0.6066 | 0.5314 | 0.9796 | -0.0008 | 0.5686 |
GAED | 0.6520 | 0.0284 | 0.0057 | 0.6804 | 0.6463 | 4.9857 | 0.0227 | 0.6747 |
SSVFRX | 0.8725 | 0.1556 | 0.0432 | 1.0281 | 0.8293 | 3.6058 | 0.1125 | 0.9849 |
D3 | AUC(D,F)↑ | AUC(D,τ)↑ | AUC(F,τ)↓ | AUCTD↑ | AUCBS↑ | AUCSNPR↑ | AUCTDBS↑ | AUCODP↑ |
---|---|---|---|---|---|---|---|---|
GRXD | 0.8227 | 0.0858 | 0.0555 | 0.9086 | 0.7673 | 1.5466 | 0.0303 | 0.8531 |
PCA | 0.8170 | 0.0882 | 0.0574 | 0.9052 | 0.7596 | 1.5355 | 0.0307 | 0.8478 |
PCRE | 0.7546 | 0.0137 | 0.0101 | 0.7684 | 0.7446 | 1.3665 | 0.0037 | 0.7583 |
ADAE | 0.7855 | 0.0238 | 0.0143 | 0.8092 | 0.7711 | 1.6623 | 0.0095 | 0.7949 |
FrFE | 0.6637 | 0.3039 | 0.2909 | 0.9676 | 0.3727 | 1.0445 | 0.0129 | 0.6766 |
LSDMMoG | 0.7368 | 0.4303 | 0.3719 | 1.1671 | 0.3649 | 1.1571 | 0.0584 | 0.7952 |
IEEPST | 0.7141 | 0.0332 | 0.0122 | 0.7473 | 0.7019 | 2.7111 | 0.0210 | 0.7351 |
CTAD | 0.8079 | 0.1436 | 0.0467 | 0.9515 | 0.7612 | 3.0775 | 0.0970 | 0.9049 |
GAED | 0.7122 | 0.0379 | 0.0258 | 0.7502 | 0.6864 | 1.4692 | 0.0121 | 0.7244 |
SSVFRX | 0.9495 | 0.0665 | 0.0148 | 1.0161 | 0.9347 | 4.4901 | 0.0517 | 1.0012 |
D4 | AUC(D,F)↑ | AUC(D,τ)↑ | AUC(F,τ)↓ | AUCTD↑ | AUCBS↑ | AUCSNPR↑ | AUCTDBS↑ | AUCODP↑ |
---|---|---|---|---|---|---|---|---|
GRXD | 0.8139 | 0.0539 | 0.0296 | 0.8678 | 0.7842 | 1.8206 | 0.0243 | 0.8382 |
PCA | 0.8168 | 0.0651 | 0.0369 | 0.8819 | 0.7799 | 1.7657 | 0.0283 | 0.8450 |
PCRE | 0.7127 | 0.0321 | 0.0242 | 0.7448 | 0.6885 | 1.3285 | 0.0079 | 0.7207 |
ADAE | 0.9417 | 0.0662 | 0.0101 | 1.0080 | 0.9316 | 6.5373 | 0.0561 | 0.9979 |
FrFE | 0.9237 | 0.2895 | 0.0556 | 1.2132 | 0.8680 | 5.2037 | 0.2339 | 1.1575 |
LSDMMoG | 0.7801 | 0.4411 | 0.3899 | 1.2213 | 0.3902 | 1.1313 | 0.0512 | 0.8313 |
IEEPST | 0.8726 | 0.0666 | 0.0149 | 0.9392 | 0.8578 | 4.4808 | 0.0517 | 0.9243 |
CTAD | 0.9335 | 0.4497 | 0.1232 | 1.3832 | 0.8103 | 3.6514 | 0.3266 | 1.2600 |
GAED | 0.9048 | 0.2292 | 0.0123 | 1.1340 | 0.8925 | 18.6209 | 0.2169 | 1.1217 |
SSVFRX | 0.9653 | 0.2759 | 0.0350 | 1.2412 | 0.9303 | 7.8855 | 0.2409 | 1.2062 |
D5 | AUC(D,F)↑ | AUC(D,τ)↑ | AUC(F,τ)↓ | AUCTD↑ | AUCBS↑ | AUCSNPR↑ | AUCTDBS↑ | AUCODP↑ |
---|---|---|---|---|---|---|---|---|
GRXD | 0.9332 | 0.3309 | 0.0989 | 1.2641 | 0.8342 | 3.3450 | 0.2320 | 1.1652 |
PCA | 0.9675 | 0.1913 | 0.0099 | 1.1589 | 0.9576 | 19.2935 | 0.1814 | 1.1489 |
PCRE | 0.9652 | 0.1572 | 0.0088 | 1.1223 | 0.9564 | 17.9522 | 0.1484 | 1.1136 |
ADAE | 0.9703 | 0.1076 | 0.0054 | 1.0779 | 0.9650 | 20.1104 | 0.1022 | 1.0726 |
FrFE | 0.8675 | 0.3510 | 0.1238 | 1.2185 | 0.7437 | 2.8349 | 0.2272 | 1.0947 |
LSDMMoG | 0.9309 | 0.2925 | 0.0781 | 1.2235 | 0.8528 | 3.7434 | 0.2144 | 1.1453 |
IEEPST | 0.9885 | 0.2305 | 0.0024 | 1.2190 | 0.9861 | 96.8195 | 0.2281 | 1.2167 |
CTAD | 0.9907 | 0.5718 | 0.0571 | 1.5625 | 0.9336 | 10.0140 | 0.5147 | 1.5054 |
GAED | 0.9512 | 0.1424 | 0.0083 | 1.0936 | 0.9428 | 17.1093 | 0.1341 | 1.0852 |
SSVFRX | 0.9968 | 0.3703 | 0.0292 | 1.3670 | 0.9676 | 12.6855 | 0.3411 | 1.3379 |
- (2)
- Target detectability (TB): AUC(D,F), AUC(D,τ), AUCTD and AUCTDBS represent the TD in different cases.
D6 | AUC(D,F)↑ | AUC(D,τ)↑ | AUC(F,τ)↓ | AUCTD↑ | AUCBS↑ | AUCSNPR↑ | AUCTDBS↑ | AUCODP↑ |
---|---|---|---|---|---|---|---|---|
GRXD | 0.8404 | 0.1841 | 0.0516 | 1.0245 | 0.7888 | 3.5691 | 0.1325 | 0.9729 |
PCA | 0.9278 | 0.0988 | 0.0133 | 1.0266 | 0.9145 | 7.4488 | 0.0855 | 1.0133 |
PCRE | 0.9348 | 0.1103 | 0.0091 | 1.0451 | 0.9257 | 12.1097 | 0.1012 | 1.0360 |
ADAE | 0.8940 | 0.0531 | 0.0128 | 0.9471 | 0.8812 | 4.1437 | 0.0403 | 0.9343 |
FrFE | 0.9441 | 0.1433 | 0.0241 | 1.0875 | 0.9200 | 5.9377 | 0.1192 | 1.0633 |
LSDMMoG | 0.8420 | 0.2989 | 0.0946 | 1.1409 | 0.7474 | 3.1600 | 0.2043 | 1.0463 |
IEEPST | 0.7970 | 0.0028 | 0.0012 | 0.7998 | 0.7959 | 2.3848 | 0.0016 | 0.7987 |
CTAD | 0.7914 | 0.1991 | 0.0503 | 0.9905 | 0.7411 | 3.9597 | 0.1488 | 0.9402 |
GAED | 0.8745 | 0.1209 | 0.0341 | 0.9954 | 0.8404 | 3.5434 | 0.0868 | 0.9613 |
SSVFRX | 0.9767 | 0.2470 | 0.0227 | 1.2238 | 0.9541 | 10.9006 | 0.2244 | 1.2011 |
- (3)
- Overall detection accuracy: AUCODP represents the overall detection accuracy.
D7 | AUC(D,F)↑ | AUC(D,τ)↑ | AUC(F,τ)↓ | AUCTD↑ | AUCBS↑ | AUCSNPR↑ | AUCTDBS↑ | AUCODP↑ |
---|---|---|---|---|---|---|---|---|
GRXD | 0.9692 | 0.1461 | 0.0437 | 1.1153 | 0.9255 | 3.3406 | 0.1024 | 1.0716 |
PCA | 0.9672 | 0.1170 | 0.0320 | 1.0842 | 0.9352 | 3.6581 | 0.0850 | 1.0522 |
PCRE | 0.9645 | 0.1315 | 0.0390 | 1.0960 | 0.9255 | 3.3686 | 0.0924 | 1.0569 |
ADAE | 0.9016 | 0.1080 | 0.0166 | 1.0096 | 0.8850 | 6.5042 | 0.0914 | 0.9930 |
FrFE | 0.9663 | 0.1168 | 0.0281 | 1.0831 | 0.9382 | 4.1516 | 0.0887 | 1.0550 |
LSDMMoG | 0.9509 | 0.3805 | 0.1843 | 1.3314 | 0.7665 | 2.0644 | 0.1962 | 1.1471 |
IEEPST | 0.8584 | 0.0239 | 0.0017 | 0.8822 | 0.8567 | 14.2165 | 0.0222 | 0.8806 |
CTAD | 0.9575 | 0.4095 | 0.0424 | 1.3670 | 0.9152 | 9.6661 | 0.3671 | 1.3246 |
GAED | 0.8129 | 0.0865 | 0.0360 | 0.8994 | 0.7769 | 2.4027 | 0.0505 | 0.8634 |
SSVFRX | 0.9775 | 0.2322 | 0.0224 | 1.2096 | 0.9550 | 10.3460 | 0.2097 | 1.1872 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teffahi, H.; Yao, H.; Chaib, S.; Belabid, N. A novel spectral-spatial classification technique for multispectral images using extended multi-attribute profiles and sparse autoencoder. Remote Sens. Lett. 2019, 10, 30–38. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Xia, K.; Yuan, G.; Xia, M.; Li, X.; Gui, J.; Zhou, H. Advanced Global Prototypical Segmentation Framework for Few-Shot Hyperspectral Image Classification. Sensors 2024, 24, 5386. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Shi, Z.; Pan, B. A supervised abundance estimation method for hyperspectral unmixing. Remote Sens. Lett. 2018, 9, 383–392. [Google Scholar] [CrossRef]
- Su, Y.; Marinoni, A.; Li, J.; Plaza, J.; Gamba, P. Stacked Nonnegative Sparse Autoencoders for Robust Hyperspectral Unmixing. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1427–1431. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X.; Xue, T.; Wang, Y. Linear Spatial Misregistration Detection and Correction Based on Spectral Unmixing for FAHI Hyperspectral Imagery. Sensors 2022, 22, 9932. [Google Scholar] [CrossRef]
- Mei, S.; Xin, Y.; Ji, J.; Shuai, W.; Dian, Q. Hyperspectral image super-resolution via convolutional neural network. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 4297–4301. [Google Scholar]
- Urbina Ortega, C.; Quevedo Gutiérrez, E.; Quintana, L.; Ortega, S.; Fabelo, H.; Santos Falcón, L.; Marrero Callico, G. Towards real-time hyperspectral multi-image super-resolution reconstruction applied to histological samples. Sensors 2023, 23, 1863. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wu, G.; Qian, D. Transferred deep learning for hyperspectral target detection. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5177–5180. [Google Scholar] [CrossRef]
- Aburaed, N.; Alkhatib, M.Q.; Marshall, S.; Zabalza, J.; Al Ahmad, H. A Review of Spatial Enhancement of Hyperspectral Remote Sensing Imaging Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2275–2300. [Google Scholar] [CrossRef]
- Hajaj, S.; El Harti, A.; Pour, A.B.; Jellouli, A.; Adiri, Z.; Hashim, M. A review on hyperspectral imagery application for lithological mapping and mineral prospecting: Machine learning techniques and future prospects. Remote Sens. Appl. Soc. Environ. 2024, 35, 101218. [Google Scholar] [CrossRef]
- Hu, X.; Xie, C.; Fan, Z.; Duan, Q.; Zhang, D.; Jiang, L.; Wei, X.; Hong, D.; Li, G.; Zeng, X. Hyperspectral Anomaly Detection Using Deep Learning: A Review. Remote Sens. 2022, 14, 1973. [Google Scholar] [CrossRef]
- Racek, F.; Baláž, T.; Melša, P. Ability of utilization of PCA in hyperspectral anomaly detection. In Proceedings of the International Conference on Military Technologies (ICMT) 2015, Brno, Czech Republic, 19–21 May 2015; pp. 1–4. [Google Scholar]
- Johnson, R.J.; Williams, J.P.; Bauer, K.W. AutoGAD: An Improved ICA-Based Hyperspectral Anomaly Detection Algorithm. IEEE Trans. Geosci. Remote 2013, 51, 3492–3503. [Google Scholar] [CrossRef]
- Cavalli, R.M.; Licciardi, G.A.; Chanussot, J. Detection of Anomalies Produced by Buried Archaeological Structures Using Nonlinear Principal Component Analysis Applied to Airborne Hyperspectral Image. IEEE J. Stars 2013, 6, 659–669. [Google Scholar] [CrossRef]
- Imani, M. Hyperspectral anomaly detection using differential image. IET Image Process. 2018, 12, 801–809. [Google Scholar] [CrossRef]
- Tao, R.; Zhao, X.; Li, W.; Li, H.C.; Du, Q. Hyperspectral Anomaly Detection by Fractional Fourier Entropy. IEEE J. Stars 2019, 12, 4920–4929. [Google Scholar] [CrossRef]
- Wx, A.; Yl, A.; Jie, L.A.; Jian, Y.A.; Jl, A.; Xj, B.; Zhen, L.C. Unsupervised spectral mapping and feature selection for hyperspectral anomaly detection. Neural Netw. 2020, 132, 144–154. [Google Scholar] [CrossRef]
- Jablonski, J.A.; Bihl, T.J.; Bauer, K.W. Principal Component Reconstruction Error for Hyperspectral Anomaly Detection. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1725–1729. [Google Scholar] [CrossRef]
- Vafadar, M.; Ghassemian, H. Hyperspectral anomaly detection using Modified Principal component analysis reconstruction error. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1741–1746. [Google Scholar]
- An, J.; Cho, S. Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability; SNU Data Mining Center: Seoul, Republic of Korea, 2015; pp. 1–8. [Google Scholar]
- Zhang, L.; Lin, F.; Fu, B. A joint model based on graph and deep learning for hyperspectral anomaly detection. Infrared Phys. Technol. 2024, 139, 105335. [Google Scholar] [CrossRef]
- Zhai, W.; Zhang, F. Robust Principal Component Analysis Integrating Sparse and Low-Rank Priors. J. Comput. Commun. 2024, 12, 1–13. [Google Scholar] [CrossRef]
- Lei, J.; Fang, S.; Xie, W.Y.; Li, Y.S.; Chang, C.I. Discriminative Reconstruction for Hyperspectral Anomaly Detection with Spectral Learning. IEEE Trans. Geosci. Remote 2020, 58, 7406–7417. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Du, Q.; Tao, R. Low-Rank and Sparse Decomposition with Mixture of Gaussian for Hyperspectral Anomaly Detection. IEEE Trans. Cybern. 2020, 51, 4363–4372. [Google Scholar] [CrossRef]
- Xiang, P.; Ali, S.; Zhang, J.; Jung, S.K.; Zhou, H. Pixel-associated autoencoder for hyperspectral anomaly detection. Int. J. Appl. Earth Obs. 2024, 129, 103816. [Google Scholar] [CrossRef]
- Acito, N.; Matteoli, S.; Rossi, A.; Diani, M.; Corsini, G. Hyperspectral Airborne “Viareggio 2013 Trial” Data Collection for Detection Algorithm Assessment. IEEE J. Stars 2016, 9, 2365–2376. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.; Li, S.; Li, K.; Li, J.; Benediktsson, J.A. Hyperspectral Anomaly Detection with Attribute and Edge-Preserving Filters. IEEE Trans. Geosci. Remote 2017, 55, 5600–5611. [Google Scholar] [CrossRef]
- Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760–1770. [Google Scholar] [CrossRef]
- Sun, X.; Zhuang, L.; Gao, L.; Gao, H.; Sun, X.; Zhang, B. Information Entropy Estimation Based on Point-Set Topology for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote 2024, 62, 5523415. [Google Scholar] [CrossRef]
- Gao, L.; Sun, X.; Sun, X.; Zhuang, L.; Du, Q.; Zhang, B. Hyperspectral Anomaly Detection Based on Chessboard Topology. IEEE Trans. Geosci. Remote 2023, 61, 5505016. [Google Scholar] [CrossRef]
- Xiang, P.; Ali, S.; Jung, S.K.; Zhou, H. Hyperspectral Anomaly Detection with Guided Autoencoder. IEEE Trans. Geosci. Remote 2022, 60, 5538818. [Google Scholar] [CrossRef]
- Chang, C.-I. An Effective Evaluation Tool for Hyperspectral Target Detection: 3D Receiver Operating Characteristic Curve Analysis. IEEE Trans. Geosci. Remote 2020, 59, 5131–5153. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, G.; Dai, W. A Tensor Decomposition-Based Anomaly Detection Algorithm for Hyperspectral Image. IEEE Trans. Geosci. Remote 2016, 54, 5801–5820. [Google Scholar] [CrossRef]
- Shixin, M.A.; Chuntong, L.; Hongcai, L.I.; Hao, W.; Zhenxin, H.E. Camouflage Effect Evaluation Based on Hyperspectral Image Detection and Visual Perception. Acta Armamentarii 2019, 40, 1485–1494. [Google Scholar] [CrossRef]
3 | 5 | 7 | 9 | 11 | |
---|---|---|---|---|---|
AUC | 0.9414 | 0.9575 | 0.9603 | 0.9613 | 0.9583 |
Time | GRXD | PCA | PCRE | ADAE | FrFE | LSDM MoG | IEEPST | CTAD | GAED | SSVFRX |
---|---|---|---|---|---|---|---|---|---|---|
D1 | 0.37 | 1.03 | 4.14 | 464.02 | 99.54 | 46.60 | 1.9057 | 285.80 | 256.48 | 280.65 |
D2 | 0.76 | 12.54 | 104.63 | 2983.21 | 416.08 | 72.46 | 1.1473 | 127.72 | 69.08 | 7556.20 |
D3 | 0.07 | 7.38 | 74.82 | 195.52 | 7.80 | 3.59 | 0.1850 | 9.26 | 10.81 | 461.94 |
D4 | 0.03 | 2.44 | 12.44 | 79.78 | 4.41 | 1.56 | 0.1961 | 5.21 | 6.50 | 203.16 |
D5 | 0.24 | 2.49 | 28.83 | 938.90 | 121.58 | 26.65 | 1.8438 | 90.73 | 28.10 | 2355.64 |
D6 | 0.09 | 1.01 | 15.62 | 126.97 | 17.53 | 10.98 | 0.6469 | 23.78 | 22.48 | 1213.36 |
D7 | 0.10 | 1.12 | 7.12 | 133.86 | 18.87 | 14.79 | 0.6713 | 23.95 | 22.30 | 1219.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Shang, W. Hyperspectral Anomaly Detection Based on Spectral Similarity Variability Feature. Sensors 2024, 24, 5664. https://doi.org/10.3390/s24175664
Li X, Shang W. Hyperspectral Anomaly Detection Based on Spectral Similarity Variability Feature. Sensors. 2024; 24(17):5664. https://doi.org/10.3390/s24175664
Chicago/Turabian StyleLi, Xueyuan, and Wenjing Shang. 2024. "Hyperspectral Anomaly Detection Based on Spectral Similarity Variability Feature" Sensors 24, no. 17: 5664. https://doi.org/10.3390/s24175664