Design of an Electronic Interface for Single-Photon Avalanche Diodes
<p>Cross-sectional view of the designed SPAD.</p> "> Figure 2
<p>(<b>a</b>) Basic passive quenching circuit for a SPAD: (<b>b</b>) the relative working phases, (<b>c</b>) the voltage mode configuration and equivalent electrical model, (<b>d</b>) characteristic current flowing in the SPAD during avalanche triggering and voltage recovery to VA (not to scale).</p> "> Figure 3
<p>The avalanche transistor-based pulse generator.</p> "> Figure 4
<p>The electronic interface composed of the SPAD and passive quenching circuit (quenching resistor RQ), a pole-zero compensation stage, a voltage amplification stage, and a high-speed comparator.</p> "> Figure 5
<p>Electron, hole, and joint probabilities versus reverse voltage.</p> "> Figure 6
<p>Current versus voltage (I–V) characteristics of SPAD under dark and light conditions.</p> "> Figure 7
<p>Time response to a single trigger pulse of the SPAD and pulse generator (<b>a</b>). Current level flowing into the collector when varying resistor R<sub>C</sub> (<b>b</b>). Evaluation of recovery time constant and quenching time constant when varying C (<b>c</b>) and R<sub>C</sub> (<b>d</b>).</p> "> Figure 8
<p>Quenching time constant before and after compensation with varying capacitor CP (<b>a</b>). Recovery time constant with varying capacitor CP before and after compensation (<b>b</b>). Comparison of the output voltage (<b>c</b>) and recovery time constant (<b>d</b>) between the SPAD model and the avalanche-based pulse generator.</p> "> Figure 9
<p>Discrete printed circuit boards of the avalanche-based pulse generator (<b>left</b>) and the pole-zero compensation circuit (<b>right</b>) (<b>a</b>). Experimental input trigger to the avalanche-based pulse generator, and the non-compensated output voltage (<b>b</b>). Experimental input trigger to the avalanche-based pulse generator, and the compensated output voltage Vo (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. SPAD Design and Modeling
2.2. SPAD Model and Electronic Interface
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalla Mora, A.; Di Sieno, L.; Re, R.; Pifferi, A.; Contini, D. Time-Gated Single-Photon Detection in Time-Domain Diffuse Optics: A Review. Appl. Sci. 2020, 10, 1101. [Google Scholar] [CrossRef]
- Stoppa, D.; Mosconi, D.; Pancheri, L.; Gonzo, L. Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements. IEEE Sens. J. 2009, 9, 1084–1090. [Google Scholar] [CrossRef]
- Grigoriev, E.; Akindinov, A.; Breitenmoser, M.; Buono, S.; Charbon, E.; Niclass, C.; Desforges, I.; Rocca, R. Silicon photomultipliers and their bio-medical applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 571, 130–133. [Google Scholar] [CrossRef]
- Niclass, C.; Rochas, A.; Besse, P.A.; Charbon, E. Toward a 3-D camera based on single photon avalanche diodes. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 796–802. [Google Scholar]
- Therrien, A.C.; Berube, B.L.; Charlebois, S.A.; Lecomte, R.; Fontaine, R.; Pratte, J.F. Modeling of single photon avalanche diode array detectors for PET applications. IEEE Trans. Nucl. Sci. 2014, 61, 14–22. [Google Scholar]
- Habib, M.H.U.; Quaiyum, F.; Islam, S.K.; McFarlane, N. Optimization of perimeter gated SPADs in a standard CMOS process. In Proceedings of the IEEE Sensors Conference, Valencia, Spain, 2–5 November 2014. [Google Scholar]
- Miah, M.A.R.; Jiang, Y.; Lo, Y.H. A physics based unified circuit model for single photon and analog detector. IEEE Access 2021, 9, 129571–129581. [Google Scholar] [CrossRef]
- Finkelstein, H.; Hsu, M.J.; Esener, S.C. STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology. IEEE Electron Device Lett. 2006, 27, 887–889. [Google Scholar] [CrossRef]
- Ceccarelli, F.; Acconcia, G.; Gulinatti, A.; Ghioni, M.; Rech, I.; Osellame, R. Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications. Adv. Quantum Technol. 2021, 4, 2000102. [Google Scholar] [CrossRef]
- Niclass, C.; Rochas, A.; Besse, P.A.; Charbon, E. Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes. IEEE J. Solid-State Circuits 2005, 40, 1847–1854. [Google Scholar]
- Gersbach, M.; Richardson, J.; Mazaleyrat, E.; Hardillier, S.; Niclass, C.; Henderson, R.; Grant, L.; Charbon, E. A low-noise single-photon detector implemented in a 130 nm CMOS imaging process. Solid-State Electron. 2009, 53, 803–808. [Google Scholar] [CrossRef]
- Dalla Mora, A.; Tosi, A.; Tisa, S.; Zappa, F. Single-photon avalanche diode model for circuit simulations. IEEE Photonics Technol. Lett. 2007, 19, 1922–1924. [Google Scholar] [CrossRef]
- Cova, S.; Ghioni, M.; Lotito, A.; Rech, I.; Zappa, F. Evolution and prospects for single-photon avalanche diodes and quenching circuits. J. Mod. Opt. 2009, 51, 1267–1288. [Google Scholar] [CrossRef]
- Zappa, F.; Ghioni, M.; Cova, S.; Samori, C.; Giudice, A.C. An integrated active-quenching circuit for single-photon avalanche diodes. IEEE Trans. Instrum. Meas. 2000, 49, 1167–1175. [Google Scholar] [CrossRef]
- Acerbi, F.; Gundacker, S. Understanding and simulating SiPMs. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 926, 16–35. [Google Scholar] [CrossRef]
- Gola, A.; Piemonte, C.; Tarolli, A. Analog circuit for timing measurements with large area SiPMs coupled to LYSO crystals. IEEE Trans. Nucl. Sci. 2013, 60, 1296–1302. [Google Scholar] [CrossRef]
- Du, Y.; Li, B.; Wang, X. Simulation Study of Silicon-Based Single-Photon Avalanche Diodes with Double Buried Layers and Deep Trench Electrodes. Crystals 2021, 11, 1176. [Google Scholar] [CrossRef]
- de Albuquerque, T.C.; Issartel, D.; Clerc, R.; Pittet, P.; Cellier, R.; Golanski, D.; Calmon, F. Indirect avalanche event detection of Single Photon Avalanche Diode implemented in CMOS FDSOI technology. Solid-State Electron. 2020, 163, 107636. [Google Scholar] [CrossRef]
- Lakeh, M.D.; Kammerer, J.B.; Schell, J.B.; Issartel, D.; Gao, S.; Cathelin, A.; Uhring, W. Integration of an ultra-fast active quenching circuit with a monolithic 3D SPAD pixel in a 28 nm FD-SOI CMOS technology. Sens. Actuators A Phys. 2023, 363, 114744. [Google Scholar] [CrossRef]
- Qian, X.; Jiang, W.; Elsharabasy, A.; Deen, M.J. Modeling for single-photon avalanche diodes: State-of-the-art and research challenges. Sensors 2023, 23, 3412. [Google Scholar] [CrossRef]
- Ha, W.Y.; Park, E.; Eom, D.; Park, H.S.; Gramuglia, F.; Keshavarzian, P.; Lee, M.J. SPAD developed in 55 nm bipolar-CMOS-DMOS technology achieving near 90% peak PDP. IEEE J. Sel. Top. Quantum Electron. 2024, 30, 3800410. [Google Scholar] [CrossRef]
- Zheng, J.; Xue, X.; Ji, C.; Yuan, Y.; Sun, K.; Rosenmann, D.; Guha, S. Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch. Nat. Commun. 2022, 13, 1517. [Google Scholar] [CrossRef] [PubMed]
- Gallivanoni, A.; Rech, I.; Ghioni, M. Progress in quenching circuits for single photon avalanche diodes. IEEE Trans. Nucl. Sci. 2010, 57, 3815–3826. [Google Scholar] [CrossRef]
- Dolatpoor Lakeh, M.; Kammerer, J.-B.; Aguénounon, E.; Issartel, D.; Schell, J.-B.; Rink, S.; Cathelin, A.; Calmon, F.; Uhring, W. An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique. Sensors 2021, 21, 4014. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Chen, C. A Review of Advanced Transceiver Technologies in Visible Light Communications. Photonics 2023, 10, 648. [Google Scholar] [CrossRef]
- Cominelli, A.; Acconcia, G.; Peronio, P.; Ghioni, M.; Rech, I. High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis. Rev. Sci. Instrum. 2017, 88, 123701. [Google Scholar] [CrossRef]
- Schaart, D.R. Physics and technology of time-of-flight PET detectors. Phys. Med. Biol. 2021, 66, 09TR01. [Google Scholar] [CrossRef]
- Laganà, F.; De Carlo, D.; Calcagno, S.; Oliva, G.; Pullano, S.A.; Fiorillo, A.S. Modeling of Electrical Impedance Tomography for Carcinoma Detection. In Proceedings of the E-Health and Bioengineering Conference (EHB), Iasi, Romania, 17–19 November 2022; pp. 1–4. [Google Scholar]
- Ullah Habib, M.H.; Quaiyum, F.; Al Mamun, K.A.; Islam, S.K.; McFarlane, N. Simulation and Modeling of Single Photon Avalanche Diodes. Int. J. High Speed Electron. Syst. 2015, 24, 1520006. [Google Scholar] [CrossRef]
- Vainshtein, S.N.; Yuferev, V.S.; Kostamovaara, J.T.; Kulagina, M.M.; Moilanen, H.T. Significant effect of emitter area on the efficiency, stability and reliability of picosecond switching in a GaAs bipolar transistor structure. IEEE Trans. Electron Devices 2010, 57, 733–741. [Google Scholar] [CrossRef]
- Wang, H.; Guo, J.; Miao, J.; Luo, W.; Gu, Y.; Xie, R.; Hu, W. Emerging Single-Photon Detectors Based on Low-Dimensional Materials. Small 2022, 18, 2103963. [Google Scholar] [CrossRef]
- Huang, S.; Rosenbaum, E. Compact model of ESD diode suitable for sub nanosecond switching transients. In Proceedings of the IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 21–24 March 2021; pp. 1–7. [Google Scholar]
- Al Abbas, T.; Dutton, N.A.W.; Almer, O.; Pellegrini, S.; Henrion, Y.; Henderson, R.K. Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-stacked CMOS technology. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 8.1.1–8.1.4. [Google Scholar]
- Pellegrini, S.; Rae, B.; Pingault, A.; Golanski, D.; Jouan, S.; Lapeyre, C.; Mamdy, B. Industrialised SPAD in 40 nm technology. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 16.5.1–16.5.4. [Google Scholar]
- Ximenes, A.R.; Padmanabhan, P.; Lee, M.; Yamashita, Y.; Yaung, D.; Charbon, E. A Modular, Direct Time-of-Flight Depth Sensor in 45/65-nm 3-D-Stacked CMOS Technology. IEEE J. Solid-State Circuits 2019, 54, 3203–3214. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Zhang, C.; Cazzaniga, M.; Efe, B.; Ximenes, A.R.; Lee, M.-J.; Charbon, E. 7.4 A 256 × 128 3D-Stacked (45 nm) SPAD FLASH LiDAR with 7-Level Coincidence Detection and Progressive Gating for 100m Range and 10 klux Background Light. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; Volume 64, pp. 111–113. [Google Scholar]
- Hatefi Hesari, S.; Haque, M.A.; McFarlane, N. A Comprehensive Survey of Readout Strategies for SiPMs Used in Nuclear Imaging Systems. Photonics 2021, 8, 266. [Google Scholar] [CrossRef]
- Hutchings, S.W.; Johnston, N.; Gyongy, I.; Al Abbas, T.; Dutton, N.A.; Tyler, M.; Henderson, R.K. A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging. IEEE J. Solid-State Circuits 2019, 54, 2947–2956. [Google Scholar] [CrossRef]
- Shimada, S.; Otake, Y.; Yoshida, S.; Endo, S.; Nakamura, R.; Tsugawa, H.; Wakano, T. A back illuminated 6 µm SPAD pixel array with high PDE and timing jitter performance. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 20.1.1–20.1.4. [Google Scholar]
- Morimoto, K.; Charbon, E. High fill-factor miniaturized SPAD arrays with a guard-ring-sharing technique. Opt. Express 2020, 28, 13068–13080. [Google Scholar] [CrossRef] [PubMed]
SPAD Model | Pulse Generator |
---|---|
VA = 65 V, RQ = 100 kΩ | VA = 110 V, RQ = 800 kΩ |
RD = 1 kΩ | RB1 = RB2 = 130 Ω, RE = 100 Ω |
VB = 60 V, CD = 9 pF | C = 1 μF, RL = 500 kΩ, Q = ZTX415 |
CP = 1 pF, RS = 100 Ω | D1 = D2 = 1N4148 |
SPAD Model Compensator | Pulse Generator Compensator |
---|---|
CZ = 10 pF, RZ = 100 kΩ | CZ = 1.5 pF, RZ = 350 kΩ |
CP = 1 pF | CP = 1 pF |
RP = 35 kΩ, R = 237 Ω | RP = 35 kΩ, R = 237 Ω |
Rf = 237 Ω | Rf = 237 Ω |
Op-amp: LMH6702 | Op-amp: LMH6702 |
Comparator: ADCMP561BRQ | Comparator: ADCMP561BRQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullano, S.A.; Oliva, G.; Titirsha, T.; Shuvo, M.M.H.; Islam, S.K.; Laganà, F.; La Gatta, A.; Fiorillo, A.S. Design of an Electronic Interface for Single-Photon Avalanche Diodes. Sensors 2024, 24, 5568. https://doi.org/10.3390/s24175568
Pullano SA, Oliva G, Titirsha T, Shuvo MMH, Islam SK, Laganà F, La Gatta A, Fiorillo AS. Design of an Electronic Interface for Single-Photon Avalanche Diodes. Sensors. 2024; 24(17):5568. https://doi.org/10.3390/s24175568
Chicago/Turabian StylePullano, Salvatore A., Giuseppe Oliva, Twisha Titirsha, Md Maruf Hossain Shuvo, Syed Kamrul Islam, Filippo Laganà, Antonio La Gatta, and Antonino S. Fiorillo. 2024. "Design of an Electronic Interface for Single-Photon Avalanche Diodes" Sensors 24, no. 17: 5568. https://doi.org/10.3390/s24175568
APA StylePullano, S. A., Oliva, G., Titirsha, T., Shuvo, M. M. H., Islam, S. K., Laganà, F., La Gatta, A., & Fiorillo, A. S. (2024). Design of an Electronic Interface for Single-Photon Avalanche Diodes. Sensors, 24(17), 5568. https://doi.org/10.3390/s24175568