Dual-Mode Embedded Impulse-Radio Ultra-Wideband Radar System for Biomedical Applications
<p>System architecture of the IR-UWB radar for hybrid biomedical applications.</p> "> Figure 2
<p>Structure of antenna unit.</p> "> Figure 3
<p>Dual-channel ASP for microwave imaging and vital sign data.</p> "> Figure 4
<p>Dual-channel ASP for microwave imaging and physiological data.</p> "> Figure 5
<p>(<b>a</b>) Antenna array module with eight 2 × 2 square patch antenna units and (<b>b</b>) backside view of the implemented radar sensor.</p> "> Figure 6
<p>Measured return loss of the antenna unit.</p> "> Figure 7
<p>Measured (<b>a</b>) E-plane and (<b>b</b>) H-plane of the antenna unit.</p> "> Figure 8
<p>Recorded real-time signal with a periodical full scan antenna.</p> "> Figure 9
<p>Profile plot of the L-shaped object.</p> "> Figure 10
<p>Radar experimental setup for vital sign detection.</p> "> Figure 11
<p>Measured vital sign results from the IR-UWB sensor.</p> "> Figure 12
<p>Error rate percentage of vital sign detection with different subjects and distances.</p> ">
Abstract
:1. Introduction
2. Design of the Embedded IR-UWB System
2.1. Hardware Implementation
2.2. Data Processing Block and Algorithms
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Miura, R. Fundamental study on UWB radar for respiration and heartbeat detection. IEICE Trans. Commun. 2014, 97, 594–601. [Google Scholar] [CrossRef]
- Schleicher, B.; Nasr, I.; Trasser, A.; Schumacher, H. IR-UWB Radar Demonstrator for Ultra-Fine Movement Detection and Vital-Sign Monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2076–2085. [Google Scholar] [CrossRef]
- Dang, X.; Zhang, J.; Hao, Z. A Non-Contact Detection Method for Multi-Person Vital Signs Based on IR-UWB Radar. Sensors 2022, 22, 6116. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, X.; Ding, Y.; Wang, Y.; Zhou, J.; Zhang, L. Contactless Simultaneous Breathing and Heart Rate Detections in Physical Activity Using IR-UWB Radars. Sensors 2021, 21, 5503. [Google Scholar] [CrossRef] [PubMed]
- Otto, G.P.; Chew, W.C. Microwave inverse scattering/spl minus/ local shape function imaging for improved resolution of strong scatterers. IEEE Trans. Microw. Theory Tech. 1994, 42, 137–141. [Google Scholar] [CrossRef]
- Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Chen, S. Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method. IEEE Trans. Geosci. Remote Sens. 2001, 39, 339–346. [Google Scholar]
- Park, B.-K.; Boric-Lubecke, O.; Lubecke, V.M. Arctangent Demodulation with DC Offset Compensation in Quadrature Doppler Radar Receiver Systems. IEEE Trans. Microw. Theory Tech. 2007, 55, 1073–1079. [Google Scholar] [CrossRef]
- Kuo, H.; Lin, C.; Yu, C.; Lo, P.; Lyu, J.; Chou, C.; Chung, H. A Fully Integrated 60-GHz CMOS Direct-Conversion Doppler Radar RF Sensor with Clutter Canceller for Single-Antenna Noncontact Human Vital-Signs Detection. IEEE Trans. Microw. Theory Tech. 2016, 64, 1018–1028. [Google Scholar] [CrossRef]
- Yang, Z.; Chiang, Y. Vital Signal Radar with Adaptive Compensation Circuits to Effectively Eliminate DC Offsets. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 88–90. [Google Scholar] [CrossRef]
- Chang, C.; Chen, W. Vital-Sign Processing Receiver with Clutter Elimination Using Servo Feedback Loop for UWB Pulse Radar System. IEEE Trans. Very Large Scale Integr. Syst. 2020, 28, 292–296. [Google Scholar] [CrossRef]
- Ko, G.-H.; Moon, S.-J.; Kim, S.-H.; Kim, J.-G.; Baek, D. Fully Integrated 24-GHz 1TX-2RX Transceiver for Compact FMCW Radar Applications. Sensors 2024, 24, 1460. [Google Scholar] [CrossRef]
- Mercuri, M.; Torfs, T.; Rykunov, M.; Laureti, S.; Ricci, M.; Crupi, F. Analysis of Signal Processing Methods to Reject the DC Offset Contribution of Static Reflectors in FMCW Radar-Based Vital Signs Monitoring. Sensors 2022, 22, 9697. [Google Scholar] [CrossRef]
- Lyu, H.; Liu, X.; Babakhani, A. A 100-M/s 2.6-pJ/pulse compact UWB impulse transmitter based on antenna-and-pulse-generator codesign. IEICE Electron. Express 2019, 16, 20190672. [Google Scholar] [CrossRef]
- Ghavami, M.; Michael, L.B.; Kohno, R. Ultra Wideband Signals and Systems in Communication Engineering, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Mahdi, R.A.H.; Taha, S.M.R. Miniaturization of rectangular microstrip patch antenna using topology optimized metamaterial. IEICE Electron. Express 2017, 19, 20170787. [Google Scholar] [CrossRef]
- Venkatachalam, D.; Govindasamy, M. A miniaturized planar antenna with defective ground structure for UWB applications. IEICE Electron. Express 2019, 16, 20190672. [Google Scholar] [CrossRef]
- Chang, C. A programmable analog baseband filter with DC offset reduction using servo loop feedback. Int. J. Circuit Theory Appl. 2018, 46, 1328–1337. [Google Scholar] [CrossRef]
- Kai, Y.; Zhao, S.; Huang, X.; Lv, W. Accurate Doppler radar-based heart rate measurement using matched filter. IEICE Electron. Express 2020, 17, 20200062. [Google Scholar]
- Chang, C.; Hu, W. Design and Implementation of an Embedded Cardio-Respiratory Monitoring System for Wheelchair Users. IEEE Embedded Syst. Lett. 2021, 13, 150–153. [Google Scholar] [CrossRef]
- Hu, W.; Chang, C.; Yang, G.; Li, C. New Paradigm for Contactless Vital-Sign Sensing Using UWB Radar and Hybrid Optical Wireless Communication. IEEE Embed. Syst. Lett. 2023, 15, 121–124. [Google Scholar] [CrossRef]
- Henault, S.; Antar, Y.M.M. Accurate evaluation of mutual coupling for array calibration. In Proceedings of the Computational Electromagnetics International Workshop, Izmir, Turkey, 20–23 July 2009; pp. 34–37. [Google Scholar]
- Leshem, A.; Wax, M. Array calibration in the presence of multipath. IEEE Trans. Signal Process. 2000, 48, 53–59. [Google Scholar] [CrossRef]
- Chang, C.-L.; Chang, C.-H.; Li, D.-H.; Hu, W.-W.; Lo, Y.-L.; Li, C.-P. An impulse radio duty-cycled radar with ultra-wideband VCO using frequency hopping technique. IEICE Electron. Express 2019, 16, 20190318. [Google Scholar] [CrossRef]
Block | Manufacturer | Specifications |
---|---|---|
RF switch | Analog Devices | DC—8 GHz, 1.2 dB insertion loss |
Driving Amplifier | Analog Devices | DC to 6 GHz, 20 dB gain |
LNA | Avago | 1.5–8 GHz, 23 dB gain, 1.6 dB NF |
Downconverter | Analog Devices | 4.5–6 GHz, 30 dB LO-RF isolation, 6.5 dB conversion loss |
Low Pass Filter | Mini-Circuits | DC—400 MHz, low insertion loss |
Low-Dropout Regulator | Texas Instruments | Available in 5 V; Output current: 800 mA |
OPA | Analog Devices | 1.8–5 V supply and rail to rail |
Microcontroller | Texas Instruments | Maximum frequency of 80 MHz |
Bluetooth | ITead Studio | HC05 Bluetooth to serial port |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, W.-P.; Chang, C.-H. Dual-Mode Embedded Impulse-Radio Ultra-Wideband Radar System for Biomedical Applications. Sensors 2024, 24, 5555. https://doi.org/10.3390/s24175555
Hung W-P, Chang C-H. Dual-Mode Embedded Impulse-Radio Ultra-Wideband Radar System for Biomedical Applications. Sensors. 2024; 24(17):5555. https://doi.org/10.3390/s24175555
Chicago/Turabian StyleHung, Wei-Ping, and Chia-Hung Chang. 2024. "Dual-Mode Embedded Impulse-Radio Ultra-Wideband Radar System for Biomedical Applications" Sensors 24, no. 17: 5555. https://doi.org/10.3390/s24175555