Development of an Automated Low-Cost Multispectral Imaging System to Quantify Canopy Size and Pigmentation
<p>Schematic of the programming logic in the low-cost multispectral imaging system (<b>A</b>), overview of low-cost multi-spectral imaging system based on an embedded computer (<b>B</b>), wiring and relay array (<b>C</b>), and detailed view of chlorophyll fluorescence filter system and bottom view of the camera module (<b>D</b>).</p> "> Figure 2
<p>Light spectrum of the commercial and in-house custom imaging systems. The numbers in the figure represent the peak and full-width half maximum (FWHM) of each light spectrum. The color of the peaks matches the representative color of each spectrum.</p> "> Figure 3
<p>Canopy images of “Mizuna”. Color image (<b>A</b>), chlorophyll fluorescence image (<b>B</b>), the mask image (<b>C</b>), and the pixel intensity distribution of the chlorophyll fluorescence image (<b>D</b>).</p> "> Figure 4
<p>Color images (<b>A</b>,<b>C</b>) and corresponding normalized difference vegetation index (NDVI) (<b>B</b>,<b>D</b>) images of “Mizuna” under different fertilizer treatments.</p> "> Figure 5
<p>Relationship between normalized difference vegetation index (NDVI) and leaf chlorophyll content readings in four leafy vegetables.</p> "> Figure 6
<p>Example images taken by the embedded computer low-cost imaging system. Healthy leaf (<b>A</b>) and leaf with chlorosis (<b>B</b>) of hosta (<span class="html-italic">Hosta plantaginea</span>) “August lily” were used. The color image (RGB), chlorophyll fluorescence image (CFI), mask image for foregrounding, and normalized difference vegetation index (NDVI) are shown.</p> "> Figure 7
<p>Example images taken by the embedded computer low-cost imaging system. Low anthocyanin lettuce cultivar “Rex” (<b>A</b>) and anthocyanin-rich cultivar “Rouxai” (<b>B</b>) were used for evaluating the system. The color image (RGB), Chlorophyll fluorescence image (CFI), mask image for foregrounding, and normalized difference anthocyanin index (NDAI) are shown.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Analysis Program
2.2. Validation of Image Analysis Program
2.3. Low-Cost, Custom System Development
3. Results
3.1. Plant Segmentation via Chlorophyll Fluorescence Imaging
3.2. Evaluation of NDVI Obtained by Multispectral Imaging
3.3. A Low-Cost Imaging System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carter, G.A. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA Special Publications: Washington, DC, USA, 1974. [Google Scholar]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Carroll, M.E.; Singh, A.; Swetnam, T.L.; Merchant, N.; Sarkar, S.; Singh, A.K.; Ganapathysubramanian, B. UAS-based plant phenotyping for research and breeding applications. Plant Phenomics 2021, 2021, 9840192. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Costa, C.; Schurr, U.; Loreto, F.; Menesatti, P.; Carpentier, S. Plant phenotyping research trends, a science mapping approach. Front. Plant Sci. 2019, 9, 1933. [Google Scholar] [CrossRef]
- del Valle, J.C.; Gallardo-López, A.; Buide, M.L.; Whittall, J.B.; Narbona, E. Digital photography provides a fast, reliable, and noninvasive method to estimate anthocyanin pigment concentration in reproductive and vegetative plant tissues. Ecol. Evol. 2018, 8, 3064–3076. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef]
- Das Choudhury, S.; Samal, A.; Awada, T. Leveraging image analysis for high-throughput plant phenotyping. Front. Plant Sci. 2019, 10, 508. [Google Scholar] [CrossRef]
- Mochida, K.; Koda, S.; Inoue, K.; Hirayama, T.; Tanaka, S.; Nishii, R.; Melgani, F. Computer vision-based phenotyping for improvement of plant productivity: A machine learning perspective. GigaScience 2019, 8, giy153. [Google Scholar] [CrossRef]
- Toda, S.; Takayama, K.; Kanoh, T.; Fujiuchi, N.; Takahashi, N.; Nishina, H. Measurement of daily stem elongation with chlorophyll fluorescence imaging robot. Eco-Engineering 2020, 32, 15–21. [Google Scholar] [CrossRef]
- Van Henten, E.J. Validation of a dynamic lettuce growth model for greenhouse climate control. Agric. Syst. 1994, 45, 55–72. [Google Scholar] [CrossRef]
- Klassen, S.P.; Ritchie, G.; Frantz, J.m.; Pinnock, D.; Bugbee, B. Real-time imaging of ground cover: Relationships with radiation capture, canopy photosynthesis, and daily growth rate. In Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004; pp. 1–14. ISBN 978-0-89118-332-7. [Google Scholar]
- Zhang, L.; Xu, Z.; Xu, D.; Ma, J.; Chen, Y.; Fu, Z. Growth monitoring of greenhouse lettuce based on a convolutional neural network. Hortic. Res. 2020, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Tovar, J.C.; Hoyer, J.S.; Lin, A.; Tielking, A.; Callen, S.T.; Elizabeth Castillo, S.; Miller, M.; Tessman, M.; Fahlgren, N.; Carrington, J.C.; et al. Raspberry Pi–powered imaging for plant phenotyping. Appl. Plant Sci. 2018, 6, e1031. [Google Scholar] [CrossRef]
- Gehan, M.A.; Fahlgren, N.; Abbasi, A.; Berry, J.C.; Callen, S.T.; Chavez, L.; Doust, A.N.; Feldman, M.J.; Gilbert, K.B.; Hodge, J.G.; et al. PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ 2017, 5, e4088. [Google Scholar] [CrossRef]
- Langstroff, A.; Heuermann, M.C.; Stahl, A.; Junker, A. Opportunities and limits of controlled-environment plant phenotyping for climate response traits. Theor. Appl. Genet. 2022, 135, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Jaramillo, A.A.; Duarte-Galvan, C.; Contreras-Medina, L.M.; Torres-Pacheco, I.; de J. Romero-Troncoso, R.; Guevara-Gonzalez, R.G.; Millan-Almaraz, J.R. Instrumentation in developing chlorophyll fluorescence biosensing: A review. Sensors 2012, 12, 11853–11869. [Google Scholar] [CrossRef] [PubMed]
- Mustafic, A.; Roberts, E.E.; Toews, M.D.; Haidekker, M.A. LED-induced fluorescence and image analysis to detect stink bug damage in cotton bolls. J. Biol. Eng. 2013, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Legendre, R.; van Iersel, M.W. Supplemental far-red light stimulates lettuce growth: Disentangling morphological and physiological effects. Plants 2021, 10, 166. [Google Scholar] [CrossRef]
- Kim, C.; van Iersel, M.W. Morphological and physiological screening to predict lettuce biomass production in controlled environment agriculture. Remote Sens. 2022, 14, 316. [Google Scholar] [CrossRef]
- Wacker, K. Development and Validation of an Open-Source, Customizable Plant Imaging System. Master’s Thesis, University of Georgia, Athens, GA, USA, 2024. [Google Scholar]
- Kim, C.; van Iersel, M.W. Image-based phenotyping to estimate anthocyanin concentrations in lettuce. Front. Plant Sci. 2023, 14, 1155722. [Google Scholar] [CrossRef] [PubMed]
- Haidekker, M. Image analysis: A perspective. In Advanced Biomedical Image Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 1–22. ISBN 978-0-470-87209-3. [Google Scholar]
- Adams, J.; Qiu, Y.; Xu, Y.; Schnable, J.C. Plant segmentation by supervised machine learning methods. Plant Phenome J. 2020, 3, e20001. [Google Scholar] [CrossRef]
- Lee, U.; Chang, S.; Putra, G.A.; Kim, H.; Kim, D.H. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis. PLoS ONE 2018, 13, e0196615. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [Google Scholar] [CrossRef]
- Stamford, J.D.; Vialet-Chabrand, S.; Cameron, I.; Lawson, T. Development of an accurate low cost NDVI imaging system for assessing plant health. Plant Methods 2023, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.R.; Chen, G.; Berger, E.M.; Warrier, S.; Lan, G.; Grubert, E.; Dellaert, F.; Chen, Y. Dynamically controlled environment agriculture: Integrating machine learning and mechanistic and physiological models for sustainable food cultivation. ACS EST Eng. 2022, 2, 3–19. [Google Scholar] [CrossRef]
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew. Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
Item | Details | Cost as Used | Cost Generic | Manufacturer Information |
---|---|---|---|---|
Raspberry Pi 4b | 4 gigabyte random access memory | 55 | 55 | Raspberry Pi 4b, The Raspberry Pi Foundation, Cambridge, UK |
Light-emitting diode (LED), red | 2.5 m | 95 | 10 | SimpleColor™ Red, Waveform Lighting, Vancouver, WA, USA |
LED, infrared | 2.5 m | 35 | 35 | 850 nm Infrared, Waveform Lighting, Vancouver, WA, USA |
LED, blue | 2.5 m | 95 | 10 | SimpleColor™ Blue, Waveform Lighting, Vancouver, WA, USA |
LED, green | 2.5 m | 95 | 10 | SimpleColor™ Green, Waveform Lighting, Vancouver, WA, USA |
Filter | 665 nm longpass | 81 | 15 | LP665, Midwest Optical Systems, Palatine, IL, USA |
4-in-1 relay | 12-volt direct current, 4 amp minimum | 8 | 8 | HW-316A, EDKG, China |
12-volt direct current power supply | 5 amp | 10 | 10 | 12-volt direct current 5 amp, Velain, China |
Diffusion plate | opaque/frosted acrylic | 20 | 20 | (2MM High Transmittance Supplier Opal Frosted Cast Milky Double-Size PS Diffuser Sheet, Sevenneonlighting, Shenzhen, China |
Sample plate | 6 mm plywood | 20 | 20 | 6 mm, 60 × 60 cm plywood, Home Depot, Atlanta, GA, USA |
Three-dimensional printed parts | 25 | 25 | Custom in-house design, printed in polylactic acid filament (PLA) | |
64 gigabyte secure digital card | 10 | 10 | 64 gigabyte micro secure digital card, SanDisk, Milpitas, CA, USA | |
Grow tent | 61 × 61 × 142 cm | 100 | 45 | Mylar Reflective Grow Tent for Indoor Hydroponic Growing, Toolots, Cerritos, CA, USA |
Servo motor | MG90s | 5 | 5 | MG90S, Maxmoral, China |
camera | OV9281 Arducam | 42 | 42 | OV9281, Arducam, Kowloon, China |
Monitor | generic high-definition multimedia interface input | 50 | 50 | Philips 22” (55 cm), Philips, Amsterdam, the Netherlands |
Keyboard/mouse | Cordless combo | 15 | 15 | Keyboard and mouse combo, Rii, Shenzhen, China |
Total | 761 | 385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wacker, K.; Kim, C.; van Iersel, M.W.; Sidore, B.; Pham, T.; Haidekker, M.; Seymour, L.; Ferrarezi, R.S. Development of an Automated Low-Cost Multispectral Imaging System to Quantify Canopy Size and Pigmentation. Sensors 2024, 24, 5515. https://doi.org/10.3390/s24175515
Wacker K, Kim C, van Iersel MW, Sidore B, Pham T, Haidekker M, Seymour L, Ferrarezi RS. Development of an Automated Low-Cost Multispectral Imaging System to Quantify Canopy Size and Pigmentation. Sensors. 2024; 24(17):5515. https://doi.org/10.3390/s24175515
Chicago/Turabian StyleWacker, Kahlin, Changhyeon Kim, Marc W. van Iersel, Benjamin Sidore, Tony Pham, Mark Haidekker, Lynne Seymour, and Rhuanito Soranz Ferrarezi. 2024. "Development of an Automated Low-Cost Multispectral Imaging System to Quantify Canopy Size and Pigmentation" Sensors 24, no. 17: 5515. https://doi.org/10.3390/s24175515
APA StyleWacker, K., Kim, C., van Iersel, M. W., Sidore, B., Pham, T., Haidekker, M., Seymour, L., & Ferrarezi, R. S. (2024). Development of an Automated Low-Cost Multispectral Imaging System to Quantify Canopy Size and Pigmentation. Sensors, 24(17), 5515. https://doi.org/10.3390/s24175515