Holo-U2Net for High-Fidelity 3D Hologram Generation
<p>Illustration of the Holo-U<sup>2</sup>Net architecture. Black solid lines in both diagrams indicate the direction of data flow: (<b>a</b>) an overview of the Holo-U<sup>2</sup>Net framework, showing the main modules and their arrangement, with RSU-7 to RSU-4 sharing a similar structure and highlighted in the same color to distinguish them from RSU-4F; (<b>b</b>) a detailed depiction of Holo-U<sup>2</sup>Net, showing the arrangement of the modules. Feature maps of the same dimension are depicted in the same color.</p> "> Figure 1 Cont.
<p>Illustration of the Holo-U<sup>2</sup>Net architecture. Black solid lines in both diagrams indicate the direction of data flow: (<b>a</b>) an overview of the Holo-U<sup>2</sup>Net framework, showing the main modules and their arrangement, with RSU-7 to RSU-4 sharing a similar structure and highlighted in the same color to distinguish them from RSU-4F; (<b>b</b>) a detailed depiction of Holo-U<sup>2</sup>Net, showing the arrangement of the modules. Feature maps of the same dimension are depicted in the same color.</p> "> Figure 2
<p>Internal structure of RSU: (<b>a</b>) RSU-7; (<b>b</b>) RSU-4F. The Conv+BN+ReLU process is represented by rectangular blocks, with blocks of the same color indicating identical convolution parameters. The size of the feature maps obtained from the upper operations is labeled on the solid lines, and the solid lines with arrows indicate the direction of feature map flow in both diagrams.</p> "> Figure 3
<p>Comparison of amplitude and phase images inferred from three samples using data from MIT-CGH-4K across various networks. The ROIs in the three samples are highlighted with orange rectangular boxes, and the results of the inference from each network are provided on the right side.</p> "> Figure 4
<p>Simulation of focus effects and defocus blur using a real-world RGB-D image, illustrating focus transition from the rear to the front. (<b>a</b>) shows the original RGB-D image with ROIs highlighted in orange rectangular boxes. (<b>b</b>–<b>f</b>) demonstrate the focus effects on various parts of the scene, where orange pentagons indicate the regions that are in focus within the focal stack.</p> ">
Abstract
:1. Introduction
2. Holo-U2Net
2.1. Overview
2.2. Details of Holo-U2Net
2.3. Wave Propagation
2.4. Loss Function
3. Experiments
3.1. Experimental Setup
3.2. Dataset and Metrics
3.3. Performance on Holo-U2Net
3.4. Focus and Defocus Simulation in Holographic Images
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luzhe, H.; Hanlong, C.; Tairan, L.; Aydogan, O. Self-supervised learning of hologram reconstruction using physics consistency. Nat. Mach. Intell. 2023, 5, 895–907. [Google Scholar]
- Sugie, T. Acceleration of CGH Computing from Point Cloud for CPU. In Hardware Acceleration of Computational Holography; Springer: Berlin/Heidelberg, Germany, 2023; pp. 137–168. [Google Scholar]
- Pan, Y.; Xu, X.; Solanki, S.; Liang, X.; Tanjung, R.B.A.; Tan, C.; Chong, T.C. Fast cgh computation using s-lut on gpu. Opt. Express 2009, 17, 18543–18555. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Masuda, N.; Hirayama, R.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T. Special-purpose computer for electroholography in embedded systems. Osa Contin. 2019, 2, 1166–1173. [Google Scholar] [CrossRef]
- Maimone, A.; Georgiou, A.; Kollin, J.S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. (Tog) 2017, 36, 85. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; Liu, J.; Li, X.; Jia, J.; Zhang, Z. Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography. Appl. Opt. 2013, 52, 4391. [Google Scholar] [CrossRef]
- Bayraktar, M.; Özcan, M. Method to calculate the far field of three-dimensional objects for computer-generated holography. Appl. Opt. 2010, 49, 4647–4654. [Google Scholar] [CrossRef]
- Agour, M.; Kreis, T. Experimental investigation of holographic 3D-TV approach. In Proceedings of the 2009 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, Potsdam, Germany, 4–6 May 2009. [Google Scholar] [CrossRef]
- Gerchberg, R. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Zuo, J.; Leng, J.; Fu, Y. Optimized phase-only hologram generation for high-quality holographic display. Appl. Opt. 2022, 61, 10519–10527. [Google Scholar] [CrossRef]
- Peng, Y.; Choi, S.; Padmanaban, N.; Wetzstein, G. Neural holography with camera-in-the-loop training. ACM Trans. Graph. 2020, 39, 185. [Google Scholar] [CrossRef]
- Zhang, J.; Pégard, N.; Zhong, J.; Adesnik, H.; Waller, L. 3D computer-generated holography by non-convex optimization. Optica 2017, 4, 1306–1313. [Google Scholar] [CrossRef]
- Chakravarthula, P.; Peng, Y.; Kollin, J.; Fuchs, H.; Heide, F. Wirtinger holography for near-eye displays. ACM Trans. Graph. (TOG) 2019, 38, 213. [Google Scholar] [CrossRef]
- Shi, L.; Li, B.; Kim, C.; Kellnhofer, P.; Matusik, W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 2021, 591, 234–239. [Google Scholar] [CrossRef]
- Qi, Y.; Chang, C.; Xia, J. Speckleless holographic display by complex modulation based on double-phase method. Opt. Express 2016, 24, 30368. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wu, J.; He, Z.; Cao, L. 4K-DMDNet: Diffraction model-driven network for 4K computer-generated holography. Opto-Electron. Adv. 2023, 6, 220135-1–220135-13. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Chen, H.; Huang, L.; Liu, T.; Ozcan, A. Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization. Light. Sci. Appl. 2022, 11, 254. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Xu, C.; Ling, Y.; Li, Y.; Su, Y. Fourier-inspired neural module for real-time and high-fidelity computer-generated holography. Opt. Lett. 2023, 48, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Ling, Y.; Xu, C.; Li, Y.; Su, Y. Gaze-contingent efficient hologram compression for foveated near-eye holographic displays. Displays 2023, 79, 102464. [Google Scholar] [CrossRef]
- Wang, Z.; Cun, X.; Bao, J.; Zhou, W.; Liu, J.; Li, H. Uformer: A general u-shaped transformer for image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 17683–17693. [Google Scholar]
- Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recognit. 2020, 106, 107404. [Google Scholar] [CrossRef]
- Matsushima, K.; Shimobaba, T. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. Opt. Express 2009, 17, 19662–196732. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, L.; Zhang, H.; Kong, D.; Jin, G. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express 2015, 23, 25440–25449. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Shimobaba, T.; Masuda, N.; Ito, T. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. Opt. Lett. 2009, 34, 3133–3135. [Google Scholar] [CrossRef]
- Xiao, L.; Kaplanyan, A.; Fix, A.; Chapman, M.; Lanman, D. DeepFocus. Acm. Trans. Graph. 2018, 37, 200. [Google Scholar] [CrossRef]
- Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor Segmentation and Support Inference from RGBD Images. In Proceedings of the ECCV, Florence, Italy, 7–13 October 2012. [Google Scholar]
- Kim, C.; Zimmer, H.; Pritch, Y.; Sorkine-Hornung, A.; Gross, M. Scene reconstruction from high spatio-angular resolution light fields. Acm. Trans. Graph. 2013, 32, 73. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 586–595. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Shi, L.; Li, B.; Matusik, W. End-to-end learning of 3d phase-only holograms for holographic display. Light. Sci. Appl. 2022, 11, 247. [Google Scholar] [CrossRef] [PubMed]
Parameter | Details |
---|---|
Operating System | Ubuntu 22.04.04 LTS |
Memory | 64.0 GiB |
CPU | Intel® CoreTM i9-14900K |
GPU | NVIDIA GeForce RTX 4090 (24 GiB) |
Python version | 3.8.18 |
PyTorch version | 2.1.2 |
CUDA version | 11.8 |
Tensorflow version | 1.15 (NVIDIA-maintained) |
Network | Amplitude SSIM ↑ | Amplitude PSNR (dB) ↑ | Focal-Stack Amplitude SSIM ↑ | Focal Stack Amplitude PSNR (dB) ↑ | ECC ↑ | LPIPS ↓ |
---|---|---|---|---|---|---|
UNet | 0.9918 | 38.72 | 0.9924 | 38.93 | 0.9971 | 0.0065 |
U2Net | 0.9922 | 39.04 | 0.9925 | 39.13 | 0.9974 | 0.0058 |
UFormer | 0.9956 | 41.37 | 0.9963 | 41.60 | 0.9985 | 0.0033 |
TensorHolo | 0.9970 | 43.42 | 0.9973 | 43.53 | 0.9984 | 0.0026 |
Ours | 0.9988 | 46.75 | 0.9988 | 46.94 | 0.9996 | 0.0008 |
Network | FLOPs (GFLOPs) | Inference Throughput (FPS) | GPU Memory Usage (GB) |
---|---|---|---|
UNet | 30.82 | 156.373 | 2.01 |
U2Net | 7.34 | 20.546 | 5.81 |
UFormer | 6.01 | 35.340 | 2.04 |
TensorHolo | 0.06 | 78.125 | 1.47 |
Ours | 35.20 | 54.716 | 6.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Lu, Z. Holo-U2Net for High-Fidelity 3D Hologram Generation. Sensors 2024, 24, 5505. https://doi.org/10.3390/s24175505
Yang T, Lu Z. Holo-U2Net for High-Fidelity 3D Hologram Generation. Sensors. 2024; 24(17):5505. https://doi.org/10.3390/s24175505
Chicago/Turabian StyleYang, Tian, and Zixiang Lu. 2024. "Holo-U2Net for High-Fidelity 3D Hologram Generation" Sensors 24, no. 17: 5505. https://doi.org/10.3390/s24175505