BMSeNet: Multiscale Context Pyramid Pooling and Spatial Detail Enhancement Network for Real-Time Semantic Segmentation
<p>Overall architecture of BiSeNet.</p> "> Figure 2
<p>CA attention mechanism.</p> "> Figure 3
<p>The architecture of AFM.</p> "> Figure 4
<p>The architecture of our proposed BMSeNet.</p> "> Figure 5
<p>Architecture of the proposed MSCPPM.</p> "> Figure 6
<p>Architecture of the proposed SDEM.</p> "> Figure 7
<p>Architecture of proposed BAFM.</p> "> Figure 8
<p>Ablation results for MSCPPM on the Cityscapes dataset: (<b>a</b>) original image, (<b>b</b>) mask image, (<b>c</b>) BiSeNet, and (<b>d</b>) BiSeNet + MSCPPM.</p> "> Figure 9
<p>Ablation results for SDEM on the Cityscapes dataset: (<b>a</b>) original image, (<b>b</b>) mask image, (<b>c</b>) BiSeNet, and (<b>d</b>) BiSeNet + SDEM.</p> "> Figure 10
<p>Ablation results for BAFM on the Cityscapes dataset: (<b>a</b>) original image, (<b>b</b>) mask image, (<b>c</b>) BiSeNet, and (<b>d</b>) BiSeNet + BAFM.</p> "> Figure 11
<p>Ablation results for overall architecture on the Cityscapes dataset: (<b>a</b>) original image, (<b>b</b>) mask image, (<b>c</b>) BiSeNet, (<b>d</b>) BiSeNet + MSCPPM, (<b>e</b>) BiSeNet + MSCPMM + SDEM, and (<b>f</b>) BMSeNet.</p> "> Figure 12
<p>Visualization results obtained by different methods on the Cityscapes dataset.</p> "> Figure 13
<p>Visualization results obtained by different methods on the CamVid dataset.</p> ">
Abstract
:1. Introduction
- The design of the Multiscale Context Pyramid Pooling Module (MSCPPM) addresses the limited semantic feature diversity in segmentation tasks. The proposed MSCPPM realizes this by employing multiple pooling operations at different scales. This approach increases the network’s receptive field and facilitates the extraction of abundant local and global feature information from the input image. Consequently, it enables the capture of abundant multiscale contextual information, enhancing the model’s ability to perceive and process information at different scales.
- In this paper, we introduce the Spatial Detail Enhancement Module (SDEM), which accurately acquires image position information through global average pooling operations in various directions. This module compensates for the loss of spatial detail information that occurs during the continuous downsampling process, thereby improving the model’s ability to effectively perceive spatial detail.
- The Bilateral Attention Fusion Module (BAFM) effectively fuses spatial detail information and global contextual information. This is achieved by reasonably guiding the network to allocate weights based on the positional correlation between pixels in two branches, which improves the effectiveness of feature fusion.
- To validate the efficacy of the proposed BMSeNet, comprehensive experiments were performed on two datasets. The results demonstrate that BMSeNet achieved 76.4% mIoU at 60.2 FPS on the Cityscapes test set, while on the CamVid test set, BMSeNet achieved 72.9% at 78 FPS.
2. Related Work
2.1. BiSeNet
2.2. Attention Mechanism
2.3. Feature Fusion
3. Proposed Method
3.1. Overall Architecture
3.2. Multiscale Context Pyramid Pooling Module (MSCPPM)
3.3. Spatial Detail Enhancement Module (SDEM)
3.4. Bilateral Attention Fusion Module (BAFM)
4. Experiments
4.1. Datasets
4.1.1. Cityscapes
4.1.2. CamVid
4.2. Implementation Details and Evaluation
4.2.1. Training Settings
4.2.2. Data Augmentation
4.2.3. Evaluation
4.3. Ablation Study
4.3.1. Ablation and Comparison Analysis of MSCPPM
4.3.2. Ablation of SDEM
4.3.3. Ablation of BAFM
4.3.4. Ablation of Overall Architecture
4.4. Comparisons with State-of-the-Art Models
4.4.1. Comparison of Cityscapes Dataset
4.4.2. Comparison of CamVid Dataset
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, W.; Worrall, S.; Zyner, A.; Nebot, E. Automated process for incorporating drivable path into real-time semantic segmentation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 6039–6044. [Google Scholar]
- Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.; Glaeser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1341–1360. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.; Liu, X.; Ma, X.; Cheng, J. Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph. Complex Intell. Syst. 2022, 8, 3833–3845. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, Z.; Wang, B. Video semantic segmentation with distortion-aware feature correction. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 3128–3139. [Google Scholar] [CrossRef]
- Saha, M.; Chakraborty, C. Her2Net: A deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation. IEEE Trans. Image Process. 2018, 27, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 603–612. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
- Wu, Z.; Shen, C.; Hengel, A.v.d. Real-time semantic image segmentation via spatial sparsity. arXiv 2017, arXiv:1712.00213. [Google Scholar]
- Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation. arXiv 2016, arXiv:1606.02147. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. Icnet for real-time semantic segmentation on high-resolution images. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 405–420. [Google Scholar]
- Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.; Hajishirzi, H. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 552–568. [Google Scholar]
- Wu, T.; Tang, S.; Zhang, R.; Cao, J.; Zhang, Y. Cgnet: A light-weight context guided network for semantic segmentation. IEEE Trans. Image Process. 2020, 30, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Poudel, R.P.; Liwicki, S.; Cipolla, R. Fast-scnn: Fast semantic segmentation network. arXiv 2019, arXiv:1902.04502. [Google Scholar]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341. [Google Scholar]
- Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [Google Scholar] [CrossRef]
- Fan, M.; Lai, S.; Huang, J.; Wei, X.; Chai, Z.; Luo, J.; Wei, X. Rethinking bisenet for real-time semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9716–9725. [Google Scholar]
- Hong, Y.; Pan, H.; Sun, W.; Jia, Y. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes. arXiv 2021, arXiv:2101.06085. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722. [Google Scholar]
- Dai, Y.; Gieseke, F.; Oehmcke, S.; Wu, Y.; Barnard, K. Attentional feature fusion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 3560–3569. [Google Scholar]
- Peng, J.; Liu, Y.; Tang, S.; Hao, Y.; Chu, L.; Chen, G.; Wu, Z.; Chen, Z.; Yu, Z.; Du, Y. Pp-liteseg: A superior real-time semantic segmentation model. arXiv 2022, arXiv:2204.02681. [Google Scholar]
- Song, Q.; Mei, K.; Huang, R. AttaNet: Attention-augmented network for fast and accurate scene parsing. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; pp. 2567–2575. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar]
- Brostow, G.J.; Shotton, J.; Fauqueur, J.; Cipolla, R. Segmentation and recognition using structure from motion point clouds. In Proceedings of the Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, 12–18 October 2008; Proceedings, Part I 10, 2008. pp. 44–57. [Google Scholar]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010: 19th International Conference on Computational Statistics, Paris, France, 22–27 August 2010; Keynote, Invited and Contributed Papers, 2010. pp. 177–186. [Google Scholar]
- Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv 2017, arXiv:1706.02677. [Google Scholar]
- Xu, J.; Xiong, Z.; Bhattacharyya, S.P. PIDNet: A real-time semantic segmentation network inspired by PID controllers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 19529–19539. [Google Scholar]
- Romera, E.; Alvarez, J.M.; Bergasa, L.M.; Arroyo, R. Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 2017, 19, 263–272. [Google Scholar] [CrossRef]
- Li, H.; Xiong, P.; Fan, H.; Sun, J. Dfanet: Deep feature aggregation for real-time semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9522–9531. [Google Scholar]
- Dong, G.; Yan, Y.; Shen, C.; Wang, H. Real-time high-performance semantic image segmentation of urban street scenes. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3258–3274. [Google Scholar] [CrossRef]
- Hu, P.; Caba, F.; Wang, O.; Lin, Z.; Sclaroff, S.; Perazzi, F. Temporally distributed networks for fast video semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8818–8827. [Google Scholar]
- Orsic, M.; Kreso, I.; Bevandic, P.; Segvic, S. In defense of pre-trained imagenet architectures for real-time semantic segmentation of road-driving images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12607–12616. [Google Scholar]
- Nirkin, Y.; Wolf, L.; Hassner, T. Hyperseg: Patch-wise hypernetwork for real-time semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 4061–4070. [Google Scholar]
- Kumaar, S.; Lyu, Y.; Nex, F.; Yang, M.Y. Cabinet: Efficient context aggregation network for low-latency semantic segmentation. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 13517–13524. [Google Scholar]
- Elhassan, M.A.; Yang, C.; Huang, C.; Munea, T.L.; Hong, X. S2-FPN: Scale-ware Strip Attention Guided Feature Pyramid Network for Real-time Semantic Segmentation. arXiv 2022, arXiv:2206.07298. [Google Scholar]
Detail Branch | Semantic Branch | Output Size | |||||
---|---|---|---|---|---|---|---|
Dopr | C | S | Sopr | C | S | ||
Input | 1024 × 1024 | ||||||
Stage1 | Conv | 64 | 2 | Conv | 64 | 2 | 512 × 512 |
Stage2 | Conv | 64 | 2 | Maxpool | 64 | 2 | 256 × 256 |
Conv | 64 | 1 | |||||
Stage3 | Conv | 64 | 2 | Conv | 128 | 2 | 128 × 128 |
Conv | 128 | 1 | Conv | 128 | 1 | ||
DBEM | 128 | - | |||||
Stage4 | Conv | 256 | 2 | 64 × 64 | |||
Conv | 256 | 1 | |||||
Stage5 | Conv | 512 | 2 | 32 × 32 | |||
Conv | 512 | 1 | |||||
MSCPPM | 128 | - |
BiSeNet | DAPPM | PAPPM | MSCPPM | mIoU (%) | GFLOPs |
---|---|---|---|---|---|
✓ | 74.40 | 55.46 | |||
✓ | ✓ | 75.20 | 56.31 | ||
✓ | ✓ | 75.40 | 56.31 | ||
✓ | ✓ | 75.82 | 56.53 |
Method | GFLOPs | mIoU (%) |
---|---|---|
BiSeNet | 55.46 | 74.40 |
BiSeNet + SDEM | 55.76 | 75.34 |
Method | GFLOPs | mIoU (%) |
---|---|---|
BiSeNet | 55.46 | 74.40 |
+Add | 54.92 | 74.05 |
+Concate | 54.37 | 74.03 |
+BAFM | 56.07 | 75.23 |
BiSeNet | MSCPPM | SDEM | BAFM | mIoU (%) | GFLOPs | FPS |
---|---|---|---|---|---|---|
✓ | 74.40 | 55.46 | 73.3 | |||
✓ | ✓ | 75.82 | 56.53 | 66.6 | ||
✓ | ✓ | ✓ | 76.27 | 56.83 | 62.2 | |
✓ | ✓ | ✓ | ✓ | 76.90 | 57.44 | 60.2 |
Method | Backbone | GFLOPs | Val (%) | Test (%) | FPS |
---|---|---|---|---|---|
DeepLab [10] | VGG16 | 457.8 | - | 63.1 | 0.3 |
PSPNet [9] | ResNet101 | 412.2 | - | 81.2 | 0.78 |
ENet [21] | No | 3.8 | - | 58.3 | 135.4 |
ICNet [23] | PSPNet50 | 28.3 | - | 69.5 | 30.3 |
ERFNet [42] | No | 27.7 | - | 69.7 | 41.7 |
DFANet [43] | Xception A | 3.4 | - | 71.3 | 100 |
LBN-AA [44] | MobileNetV2 | 49.5 | - | 73.6 | 51.0 |
BiSeNet1 [27] | Xception39 | 5.8 | 69.0 | 68.4 | 105.8 |
BiSeNet2 [27] | ResNet18 | 55.5 | 74.4 | 74.7 | 73.3 |
BiSeNetV2 [28] | No | 21.1 | 73.4 | 72.6 | 156 |
TD4-Bise18 [45] | BiseNet18 | - | 75.0 | 74.9 | 47.6 |
SwiftNet [46] | ResNet18 | 104.0 | 75.5 | 75.4 | 39.9 |
STDC1-Seg75 [29] | STDC1 | 55.9 | 74.5 | 75.3 | 140.7 |
HyperSeg-M [47] | EfficientNet-B1 | 7.5 | 76.2 | 75.8 | 36.9 |
CABiNet [48] | MobileNetV3 | 12.0 | 76.6 | 75.9 | 76.5 |
BMSeNet | ResNet18 | 57.4 | 76.9 | 76.4 | 60.2 |
Method | Backbone | mIoU (%) | FPS |
---|---|---|---|
ENet [21] | No | 51.3 | 61.2 |
ICNet [23] | PSPNet50 | 67.1 | 27.8 |
LBN-AA [44] | MobileNetV2 | 68.0 | 39.3 |
DFANet [43] | Xception A | 64.7 | 120 |
BiSeNet1 [27] | Xception39 | 65.6 | 175 |
BiSeNet2 [27] | ResNet18 | 68.7 | 116.3 |
S2-FPN18 [49] | ResNet18 | 69.5 | 107 |
S2-FPN34 [49] | ResNet34 | 71.0 | 107.2 |
BiSeNetV2 [28] | No | 72.4 | 124.5 |
TD4-Bise18 [45] | BiseNet18 | 72.6 | 25.0 |
SwiftNet [46] | ResNet18 | 72.6 | - |
BMSeNet | ResNet18 | 72.9 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zhao, X.; Huo, Z.; Zhang, F. BMSeNet: Multiscale Context Pyramid Pooling and Spatial Detail Enhancement Network for Real-Time Semantic Segmentation. Sensors 2024, 24, 5145. https://doi.org/10.3390/s24165145
Zhao S, Zhao X, Huo Z, Zhang F. BMSeNet: Multiscale Context Pyramid Pooling and Spatial Detail Enhancement Network for Real-Time Semantic Segmentation. Sensors. 2024; 24(16):5145. https://doi.org/10.3390/s24165145
Chicago/Turabian StyleZhao, Shan, Xin Zhao, Zhanqiang Huo, and Fukai Zhang. 2024. "BMSeNet: Multiscale Context Pyramid Pooling and Spatial Detail Enhancement Network for Real-Time Semantic Segmentation" Sensors 24, no. 16: 5145. https://doi.org/10.3390/s24165145
APA StyleZhao, S., Zhao, X., Huo, Z., & Zhang, F. (2024). BMSeNet: Multiscale Context Pyramid Pooling and Spatial Detail Enhancement Network for Real-Time Semantic Segmentation. Sensors, 24(16), 5145. https://doi.org/10.3390/s24165145