An Explainable Deep Learning Approach for Stress Detection in Wearable Sensor Measurements
<p>Overview of the methodology, with Rule-based algorithm based on [<a href="#B7-sensors-24-05085" class="html-bibr">7</a>].</p> "> Figure 2
<p>The feature relevance to stress from one seed of the ensemble. Time-domain features are shown on the x-axis with references to the certain time-step.</p> "> Figure 3
<p>A moment of stress and the predictions over various sliding windows.</p> "> Figure 4
<p>A test participant from the test dataset with the ground-truth stressors and the predicted stressors without a reaction at the ground-truth labels.</p> "> Figure 5
<p>A test participant from the test-dataset with the ground-truth stressors and the predicted stressors showing noise in between the ground-truth labels.</p> ">
Abstract
:1. Introduction
- Integrated Gradients offers an XAI approach to highlight the significant features used by the DL model to predict stress. For electrodermal activity, these features are in line with existing literature and expert knowledge.
- Skin temperature does not lead to significant contributions in the classification of acute stress, neither in the rule-based system nor in the DL approach.
- DL methodologies enable the automatic derivation of meaningful features from raw physiological biosignals in the time and frequency domains.
2. Related Work
3. Methodology
3.1. Physiological Data Collection
3.2. Signal Processing
3.3. Deep Learning for Physiological Stress Detection
4. Experiments and Results
4.1. Stress Detection Results
4.2. Results with Regard to ST Contribution
4.3. Interpretability of the Deep Learning Approach
5. Discussion
5.1. Discussion of Methodology
5.2. Discussion of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating Current |
ANS | Autonomic Nervous System |
BVP | Blood Volume Pressure |
DC | Direct Current |
DL | Deep Learning |
ECG | Electrocardiography |
EDA | Electrodermal Activity |
EDL | Electrodermal Level |
EDR | Electrodermal Response |
FN | False Negative |
FP | False Positive |
FPR | False Positive Rate |
GAN | Generative Adversarial Network |
GNSS | Global Navigation Satellite System |
GSR | Galvanic Skin Response |
HR | Heart Rate |
HRV | Heart Rate Variability |
Hz | Hertz |
IBI | Inter-Beat Interval |
IG | Integrated Gradients |
LDA | Linear Discriminant Analysis |
LUCCK | Learning Using Concave and Convex Kernels |
LSTM | Long-Short Term Memory Network |
ML | Machine Learning |
MOS | Moment of Stress |
NN | Neural Network |
PPG | Photoplethysmography |
SC | Skin Conductance |
SCL | Skin Conductance Level |
SCR | Skin Conductance Response |
ST | Skin Temperature |
SVM | Support Vector Machine |
TN | True Negative |
TP | True Positive |
TPR | True Positive Rate |
VR | Virtual Reality |
Appendix A. Hyperparameters
Hyperparameter | Values |
---|---|
Number of Layers | [1, 2] |
Number of MOS-Augmented | [400, 800, 1200] |
Number of non-MOS-Augmented | [400, 800, 1200] |
Units | [32, 64] |
Inital Learning Rate | [0.01, 0.001, 0.0001] |
Learning Rate Schedular | Cosine Scheduler |
Optimizer | Adam with Weight Decay |
References
- Hefez, A.; Metz, L.; Lavie, P. Long-term effects of extreme situational stress on sleep and dreaming. Am. J. Psychiatry 1987, 144, 344–347. [Google Scholar] [PubMed]
- McGonagle, K.A.; Kessler, R.C. Chronic stress, acute stress, and depressive symptoms. Am. J. Community Psychol. 1990, 18, 681–706. [Google Scholar] [CrossRef] [PubMed]
- Schubert, C.; Lambertz, M.; Nelesen, R.; Bardwell, W.; Choi, J.B.; Dimsdale, J. Effects of stress on heart rate complexity—A comparison between short-term and chronic stress. Biol. Psychol. 2009, 80, 325–332. [Google Scholar] [CrossRef]
- Dhabhar, F.S. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol. Res. 2014, 58, 193–210. [Google Scholar] [CrossRef] [PubMed]
- McMurray, L. Emotional stress and driving performance: The effect of divorce. Behav. Res. Highw. Saf. 1970, 1, 100–114. [Google Scholar]
- Giannakakis, G.; Grigoriadis, D.; Giannakaki, K.; Simantiraki, O.; Roniotis, A.; Tsiknakis, M. Review on psychological stress detection using biosignals. IEEE Trans. Affect. Comput. 2019, 13, 440–460. [Google Scholar] [CrossRef]
- Moser, M.K.; Resch, B.; Ehrhart, M. An Individual-oriented Algorithm for Stress Detection in Wearable Sensor Measurements. IEEE Sens. J. 2023, 23, 22845–22856. [Google Scholar] [CrossRef]
- Kyriakou, K.; Resch, B.; Sagl, G.; Petutschnig, A.; Werner, C.; Niederseer, D.; Liedlgruber, M.; Wilhelm, F.; Osborne, T.; Pykett, J. Detecting moments of stress from measurements of wearable physiological sensors. Sensors 2019, 19, 3805. [Google Scholar] [CrossRef]
- Gedam, S.; Paul, S. A review on mental stress detection using wearable sensors and machine learning techniques. IEEE Access 2021, 9, 84045–84066. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Schmidt, P.; Reiss, A.; Duerichen, R.; Marberger, C.; Van Laerhoven, K. Introducing wesad, a multimodal dataset for wearable stress and affect detection. In Proceedings of the 20th ACM International Conference on Multimodal Interaction, Boulder, CO, USA, 16–20 October 2018; pp. 400–408. [Google Scholar]
- Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The ‘Trier Social Stress Test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Setz, C.; Arnrich, B.; Schumm, J.; La Marca, R.; Tröster, G.; Ehlert, U. Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 410–417. [Google Scholar] [CrossRef]
- Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for deep networks. In Proceedings of the International Conference on Machine Learning PMLR, Sydney, Australia, 6–11 August 2017; pp. 3319–3328. [Google Scholar]
- La Rosa, B.; Blasilli, G.; Bourqui, R.; Auber, D.; Santucci, G.; Capobianco, R.; Bertini, E.; Giot, R.; Angelini, M. State of the art of visual analytics for explainable deep learning. Comput. Graph. Forum 2023, 42, 319–355. [Google Scholar] [CrossRef]
- van Breugel, B.; Qian, Z.; van der Schaar, M. Synthetic data, real errors: How (not) to publish and use synthetic data. arXiv 2023, arXiv:2305.09235. [Google Scholar]
- Vos, G.; Trinh, K.; Sarnyai, Z.; Azghadi, M.R. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Int. J. Med. Inform. 2023, 173, 105026. [Google Scholar] [CrossRef] [PubMed]
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Farrow, T.F.; Johnson, N.K.; Hunter, M.D.; Barker, A.T.; Wilkinson, I.D.; Woodruff, P.W. Neural correlates of the behavioral-autonomic interaction response to potentially threatening stimuli. Front. Hum. Neurosci. 2013, 6, 349. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Valenza, G.; Lazaro, J.; Garzon-Rey, J.M.; Aguilo, J.; De-la Camara, C.; Bailon, R.; Scilingo, E.P. Acute stress state classification based on electrodermal activity modeling. IEEE Trans. Affect. Comput. 2021, 14, 788–799. [Google Scholar] [CrossRef]
- Dawson, M.E.; Schell, A.M.; Filion, D.L. The electrodermal system. In Handbook of Psychophysiology; Cambridge University Press: Cambridge, UK, 2007; Volume 2, pp. 200–223. [Google Scholar]
- Greco, A.; Valenza, G.; Lanata, A.; Scilingo, E.P.; Citi, L. cvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 2015, 63, 797–804. [Google Scholar] [CrossRef]
- Zhai, J.; Barreto, A. Stress detection in computer users based on digital signal processing of noninvasive physiological variables. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 1355–1358. [Google Scholar]
- Vinkers, C.H.; Penning, R.; Hellhammer, J.; Verster, J.C.; Klaessens, J.H.; Olivier, B.; Kalkman, C.J. The effect of stress on core and peripheral body temperature in humans. Stress 2013, 16, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Shusterman, V.; Anderson, K.P.; Barnea, O. Spontaneous skin temperature oscillations in normal human subjects. Am. J.-Physiol.-Regul. Integr. Comp. Physiol. 1997, 273, R1173–R1181. [Google Scholar] [CrossRef] [PubMed]
- Bobade, P.; Vani, M. Stress detection with machine learning and deep learning using multimodal physiological data. In Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 51–57. [Google Scholar]
- Smets, E.; Casale, P.; Großekathöfer, U.; Lamichhane, B.; De Raedt, W.; Bogaerts, K.; Van Diest, I.; Van Hoof, C. Comparison of machine learning techniques for psychophysiological stress detection. In Pervasive Computing Paradigms for Mental Health, Proceedings of the 5th International Conference, MindCare 2015, Milan, Italy, 24–25 September 2015; Revised Selected Papers 5; Springer: Cham, Switzerland, 2016; pp. 13–22. [Google Scholar]
- Li, R.; Liu, Z. Stress detection using deep neural networks. BMC Med. Inform. Decis. Mak. 2020, 20, 285. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Ehrhart, M.; Resch, B.; Havas, C.; Niederseer, D. A Conditional GAN for Generating Time Series Data for Stress Detection in Wearable Physiological Sensor Data. Sensors 2022, 22, 5969. [Google Scholar] [CrossRef] [PubMed]
- Petutschnig, A.; Reichel, S.; Měchurová, K.; Resch, B. An eDiary App Approach for collecting physiological Sensor Data from Wearables together with subjective observations and emotions. Sensors 2022, 22, 6120. [Google Scholar] [CrossRef] [PubMed]
- E4 Wristband|Real-Time Physiological Signals|Wearable PPG, EDA, Temperature, Motion Sensors. Available online: https://support.empatica.com/hc/en-us/articles/202581999-E4-wristband-technical-specifications (accessed on 3 July 2024).
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 2342–2350. [Google Scholar]
- Um, T.T.; Pfister, F.M.J.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks. In Proceedings of the 19th ACM International Conference on Multimodal Interaction, ACM, ICMI’17, Glasgow, UK, 13–17 November 2017. [Google Scholar] [CrossRef]
- Ganaie, M.; Hu, M.; Malik, A.; Tanveer, M.; Suganthan, P. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022, 115, 105151. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: New York, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Kyriakou, K.; Resch, B. Spatial analysis of moments of stress derived from wearable sensor data. Adv. Cartogr. Gisci. ICA 2019, 2, 1–8. [Google Scholar] [CrossRef]
Seed | Recall | Precision | Accuracy | |
---|---|---|---|---|
LSTM (DGE K = 5) | I | 0.68 | 0.3477 | 0.983 |
II | 0.8 | 0.4 | 0.9817 | |
III | 0.81 | 0.3378 | 0.9779 | |
LSTM (DGE K = 5) & Ensemble | I | 0.67 | 0.3939 | 0.9848 |
II | 0.79 | 0.4108 | 0.9824 | |
III | 0.75 | 0.3475 | 0.9799 | |
Rule-Based [7] (Moser et al., 2023) | I | 0.64 | 0.3120 | 0.9822 |
II | 0.82 | 0.3548 | 0.9822 | |
III | 0.74 | 0.3023 | 0.9799 |
Seed | Recall | Precision | Accuracy |
---|---|---|---|
EDA | |||
I | 0.53 | 0.3987 | 0.9873 |
II | 0.66 | 0.4492 | 0.9867 |
III | 0.63 | 0.363 | 0.9832 |
EDA & ST | |||
I | 0.54 | 0.3761 | 0.9857 |
II | 0.73 | 0.4349 | 0.9845 |
III | 0.63 | 0.4033 | 0.9851 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moser, M.K.; Ehrhart, M.; Resch, B. An Explainable Deep Learning Approach for Stress Detection in Wearable Sensor Measurements. Sensors 2024, 24, 5085. https://doi.org/10.3390/s24165085
Moser MK, Ehrhart M, Resch B. An Explainable Deep Learning Approach for Stress Detection in Wearable Sensor Measurements. Sensors. 2024; 24(16):5085. https://doi.org/10.3390/s24165085
Chicago/Turabian StyleMoser, Martin Karl, Maximilian Ehrhart, and Bernd Resch. 2024. "An Explainable Deep Learning Approach for Stress Detection in Wearable Sensor Measurements" Sensors 24, no. 16: 5085. https://doi.org/10.3390/s24165085
APA StyleMoser, M. K., Ehrhart, M., & Resch, B. (2024). An Explainable Deep Learning Approach for Stress Detection in Wearable Sensor Measurements. Sensors, 24(16), 5085. https://doi.org/10.3390/s24165085