HP-YOLOv8: High-Precision Small Object Detection Algorithm for Remote Sensing Images
<p>Structure of YOLOv8.</p> "> Figure 2
<p>Structure of HP-YOLOv8.</p> "> Figure 3
<p>Comparison of YOLOv8 and HP-YOLOv8. C2f-DM (detailed in <a href="#sec4dot2-sensors-24-04858" class="html-sec">Section 4.2</a>), BGFPN (detailed in <a href="#sec4dot3-sensors-24-04858" class="html-sec">Section 4.3</a>), and SMPDIoU (detailed in <a href="#sec4dot4-sensors-24-04858" class="html-sec">Section 4.4</a>).</p> "> Figure 4
<p>Comparison of C2f and C2f-DM Structure.</p> "> Figure 5
<p>Bi-Level Routing Attention in Gated Feature Pyramid Network.</p> "> Figure 6
<p>Bi-Level Routing Attention.</p> "> Figure 7
<p>Distance loss diagram and MPD schematic diagram.</p> "> Figure 8
<p>Evaluation of trends in recall, precision, mAP@0.5, and mAP@[0.5:0.95] for YOLOv8 and HP-YOLOv8 on the RSOD validation dataset.</p> "> Figure 9
<p>Precision–recall curves for RSOD datasets.</p> "> Figure 10
<p>Detection outcomes on the RSOD, NWPU VHR-10, and VisDrone2019 datasets are depicted. Panels (<b>a</b>–<b>c</b>) show the results using YOLOv8, whereas panels (<b>A</b>–<b>C</b>) illustrate the results from HP-YOLOv8.</p> ">
Abstract
:1. Introduction
- We design and implement the C2f-DM module as a replacement for the current C2f module. The module efficiently integrates local and global information, significantly improving the ability to capture features of small objects while effectively mitigating detection precision issues caused by object overlap.
- We propose a feature fusion technique based on the attention mechanism, named BGFPN. This technique utilizes an efficient feature aggregation network and re-parameterization technology to optimize the interaction of information between feature maps of different scales. Through the Bi-level Routing Attention (BRA) mechanism, it effectively captures key feature information of small objects.
- We propose a SMPDIoU loss function. This approach thoroughly accounts for the shape and dimensions of the detection boxes, strengthens the model’s focus on the attributes of detection boxes, and provides a more accurate bounding box regression loss calculation method.
2. Related Work
2.1. Feature Extraction
2.2. Feature Fusion
2.3. Optimization of Bounding Box Regression Loss Function
3. Fundamentals of the YOLO v8 Model
4. Methodology
4.1. Framework Overview
4.2. C2f-DM Module
4.3. Bi-Level Routing Attention in Gated Feature Pyramid Network
4.3.1. Improved Feature Fusion Method
4.3.2. Bi-Level Routing Attention
4.4. Shape Mean Perpendicular Distance Intersection over Union
5. Experiments
5.1. Experimental Setup
5.2. Overall Performance of HP-YOLOv8
5.3. Ablation Experiment
5.4. Comparison with Other Models
5.5. Experimental Results Presentation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z. Drone-YOLO: An efficient neural network method for target detection in drone images. Drones 2023, 7, 526. [Google Scholar] [CrossRef]
- Zhao, D.; Shao, F.; Liu, Q.; Yang, L.; Zhang, H.; Zhang, Z. A Small Object Detection Method for Drone-Captured Images Based on Improved YOLOv7. Remote Sens. 2024, 16, 1002. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; He, W.; Ren, J.; Zhang, Q.; Zhao, Y.; Bai, R.; He, X.; Liu, J. Scale Optimization Using Evolutionary Reinforcement Learning for Object Detection on Drone Imagery. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, Canada, 20–27 February 2024; Volume 8, pp. 410–418. [Google Scholar]
- Rostami, M.; Farajollahi, A.; Parvin, H. Deep learning-based face detection and recognition on drones. J. Ambient. Intell. Humaniz. Comput. 2024, 15, 373–387. [Google Scholar] [CrossRef]
- Zeng, S.; Yang, W.; Jiao, Y.; Geng, L.; Chen, X. SCA-YOLO: A new small object detection model for UAV images. Vis. Comput. 2024, 40, 1787–1803. [Google Scholar] [CrossRef]
- Lin, C.J.; Jhang, J.Y. Intelligent traffic-monitoring system based on YOLO and convolutional fuzzy neural networks. IEEE Access 2022, 10, 14120–14133. [Google Scholar] [CrossRef]
- Li, A.; Sun, S.; Zhang, Z.; Feng, M.; Wu, C.; Li, W. A multi-scale traffic object detection algorithm for road scenes based on improved YOLOv5. Electronics 2023, 12, 878. [Google Scholar] [CrossRef]
- Ghahremannezhad, H.; Shi, H.; Liu, C. Object detection in traffic videos: A survey. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6780–6799. [Google Scholar] [CrossRef]
- Lai, H.; Chen, L.; Liu, W.; Yan, Z.; Ye, S. STC-YOLO: Small object detection network for traffic signs in complex environments. Sensors 2023, 23, 5307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Fang, J.J.; Liu, Y.X.; Le, H.F.; Rao, Z.Q.; Zhao, J.X. CR-YOLOv8: Multiscale object detection in traffic sign images. IEEE Access 2023, 12, 219–228. [Google Scholar] [CrossRef]
- Skripachev, V.; Guida, M.; Guida, N.; Zhukov, A. Investigation of convolutional neural networks for object detection in aerospace images. Int. J. Open Inf. Technol. 2022, 10, 54–64. [Google Scholar]
- Shi, Q.; Li, L.; Feng, J.; Chen, W.; Yu, J. Automated Model Hardening with Reinforcement Learning for On-Orbit Object Detectors with Convolutional Neural Networks. Aerospace 2023, 10, 88. [Google Scholar] [CrossRef]
- Noroozi, M.; Shah, A. Towards optimal foreign object debris detection in an airport environment. Expert Syst. Appl. 2023, 213, 118829. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, D.; He, Y.; Zhao, L.; Cheng, P.; Li, H.; Chen, K. Aircraft-LBDet: Multi-Task Aircraft Detection with Landmark and Bounding Box Detection. Remote Sens. 2023, 15, 2485. [Google Scholar] [CrossRef]
- Chen, H.B.; Jiang, S.; He, G.; Zhang, B.; Yu, H. TEANS: A target enhancement and attenuated nonmaximum suppression object detector for remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 632–636. [Google Scholar] [CrossRef]
- Hou, L.; Lu, K.; Xue, J.; Hao, L. Cascade detector with feature fusion for arbitrary-oriented objects in remote sensing images. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Lu, X.; Ji, J.; Xing, Z.; Miao, Q. Attention and feature fusion SSD for remote sensing object detection. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Li, Q.; Mou, L.; Liu, Q.; Wang, Y.; Zhu, X.X. HSF-Net: Multiscale deep feature embedding for ship detection in optical remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7147–7161. [Google Scholar] [CrossRef]
- Dong, R.; Xu, D.; Zhao, J.; Jiao, L.; An, J. Sig-NMS-based faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8534–8545. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhong, Y.; Ma, A.; Han, X.; Zhao, J.; Liu, Y.; Zhang, L. HyNet: Hyper-scale object detection network framework for multiple spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2020, 166, 1–14. [Google Scholar] [CrossRef]
- Xi, Y.; Jia, W.; Miao, Q.; Feng, J.; Liu, X.; Li, F. Coderainnet: Collaborative deraining network for drone-view object detection in rainy weather conditions. Remote Sens. 2023, 15, 1487. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Shen, L.; Lang, B.; Song, Z. DS-YOLOv8-Based Object Detection Method for Remote Sensing Images. IEEE Access 2023, 11, 125122–125137. [Google Scholar] [CrossRef]
- Zhai, X.; Huang, Z.; Li, T.; Liu, H.; Wang, S. YOLO-Drone: An Optimized YOLOv8 Network for Tiny UAV Object Detection. Electronics 2023, 12, 3664. [Google Scholar] [CrossRef]
- Yi, H.; Liu, B.; Zhao, B.; Liu, E. Small Object Detection Algorithm Based on Improved YOLOv8 for Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1734–1747. [Google Scholar] [CrossRef]
- Lin, B.; Wang, J.; Wang, H.; Zhong, L.; Yang, X.; Zhang, X. Small Space Target Detection Based on a Convolutional Neural Network and Guidance Information. Aerospace 2023, 10, 426. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Wang, H.; Guo, J.; Zheng, J.; Ning, H. SES-YOLOv8n: Automatic driving object detection algorithm based on improved YOLOv8. Signal Image Video Process. 2024, 18, 3983–3992. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J.; Nie, Z.; Yang, H.; Yu, S. A lightweight YOLOv8 tomato detection algorithm combining feature enhancement and attention. Agronomy 2023, 13, 1824. [Google Scholar] [CrossRef]
- Wang, X.; Gao, H.; Jia, Z.; Li, Z. BL-YOLOv8: An improved road defect detection model based on YOLOv8. Sensors 2023, 23, 8361. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, Q.; Huang, H.; Han, Z.; Gu, Q. A modified YOLOv8 detection network for UAV aerial image recognition. Drones 2023, 7, 304. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750. [Google Scholar]
- Safaldin, M.; Zaghden, N.; Mejdoub, M. An Improved YOLOv8 to Detect Moving Objects. IEEE Access 2024, 12, 59782–59806. [Google Scholar] [CrossRef]
- Wu, T.; Dong, Y. YOLO-SE: Improved YOLOv8 for remote sensing object detection and recognition. Appl. Sci. 2023, 13, 12977. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Li, Y.; Li, X.; Dai, Y.; Hou, Q.; Liu, L.; Liu, Y.; Cheng, M.M.; Yang, J. LSKNet: A Foundation Lightweight Backbone for Remote Sensing. arXiv 2024, arXiv:2403.11735. [Google Scholar]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2778–2788. [Google Scholar]
- Zhang, J.; Lei, J.; Xie, W.; Fang, Z.; Li, Y.; Du, Q. SuperYOLO: Super resolution assisted object detection in multimodal remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Shen, X.; Wang, H.; Cui, T.; Guo, Z.; Fu, X. Multiple information perception-based attention in YOLO for underwater object detection. Vis. Comput. 2024, 40, 1415–1438. [Google Scholar] [CrossRef]
- Wang, H.; Yao, M.; Chen, Y.; Xu, Y.; Liu, H.; Jia, W.; Fu, X.; Wang, Y. Manifold-based Incomplete Multi-view Clustering via Bi-Consistency Guidance. IEEE Trans. Multimed. 2024. Early Access. [Google Scholar] [CrossRef]
- Wang, H.; Yao, M.; Jiang, G.; Mi, Z.; Fu, X. Graph-collaborated auto-encoder hashing for multiview binary clustering. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 10121–10133. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Wang, Y. Optimizing intersection-over-union in deep neural networks for image segmentation. In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, 12–14 December 2016; Springer: Cham, Switzerland, 2016; pp. 234–244. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Zhang, H.; Zhang, S. Shape-IoU: More Accurate Metric considering Bounding Box Shape and Scale. arXiv 2023, arXiv:2312.17663. [Google Scholar]
- Siliang, M.; Yong, X. Mpdiou: A loss for efficient and accurate bounding box regression. arXiv 2023, arXiv:2307.07662. [Google Scholar]
- Lou, M.; Zhou, H.Y.; Yang, S.; Yu, Y. TransXNet: Learning both global and local dynamics with a dual dynamic token mixer for visual recognition. arXiv 2023, arXiv:2310.19380. [Google Scholar]
- Zhu, L.; Wang, X.; Ke, Z.; Zhang, W.; Lau, R.W. Biformer: Vision transformer with bi-level routing attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 10323–10333. [Google Scholar]
- Xu, X.; Jiang, Y.; Chen, W.; Huang, Y.; Zhang, Y.; Sun, X. Damo-yolo: A report on real-time object detection design. arXiv 2022, arXiv:2211.15444. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Soudy, M.; Afify, Y.; Badr, N. RepConv: A novel architecture for image scene classification on Intel scenes dataset. Int. J. Intell. Comput. Inf. Sci. 2022, 22, 63–73. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q. Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2486–2498. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q. Vision meets drones: A challenge. arXiv 2018, arXiv:1804.07437. [Google Scholar]
- Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. Yolov9: Learning what you want to learn using programmable gradient information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. Yolov10: Real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Zhang, H.; Chang, H.; Ma, B.; Wang, N.; Chen, X. Dynamic R-CNN: Towards high quality object detection via dynamic training. In Proceedings of the ECCV 2020—16th European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Proceedings, Part XV 16. Springer: Cham, Switzerland, 2020; pp. 260–275. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
Configuration Item | Name | Specification |
---|---|---|
Hardware environment | GPU | NVIDIA GeForce RTX 3080 |
CPU | Intel Core i7-11700K | |
VRAM | 12G | |
RAM | 64G | |
Software environment | Operating System | Ubuntu 18.04 |
Python | 3.8.12 | |
Pytorch | 1.10.0 | |
CUDA | 10.4 | |
cuDNN | 7.6.5 |
Hyperparameter Options | Setting |
---|---|
Epochs | 200 |
Initial Learning Rate 0 | 0.01 |
Learning Rate Float | 0.01 |
Input Resolution | 640 × 640 × 3 |
Weight_decay | 0.0005 |
Momentum | 0.937 |
Batch_size | 4 |
Model | Class | Aircraft | Oil tank | Overpass | Playground |
---|---|---|---|---|---|
YOLOv8 | P | 95.52 | 96.83 | 71.92 | 95.31 |
R | 91.62 | 95.34 | 70.21 | 96.82 | |
F1 | 93.53 | 96.06 | 71.06 | 96.06 | |
AP | 95.34 | 97.05 | 68.87 | 98.02 | |
HP-YOLOv8 | P | 97.23 | 96.85 | 87.42 | 96.65 |
R | 90.76 | 95.23 | 81.94 | 97.23 | |
F1 | 93.93 | 96.62 | 84.62 | 96.94 | |
AP | 95.82 | 98.25 | 87.46 | 98.93 |
Model | Class | Bridge | Ground Track Field | Ship | Baseball Diamond | Airplane | Basketball Court | Vehicle | Tennis Court | Harbor | Storage Tank |
---|---|---|---|---|---|---|---|---|---|---|---|
YOLOv8 | P | 95.95 | 76.84 | 98.65 | 93.89 | 94.56 | 89.94 | 90.12 | 93.21 | 98.45 | 92.82 |
R | 80.23 | 54,76 | 94.78 | 92.56 | 85.80 | 70.64 | 64.87 | 85.46 | 99.25 | 82.98 | |
F1 | 87.47 | 63.93 | 96.68 | 93.22 | 90.04 | 79.16 | 75.93 | 89.17 | 98.85 | 87.70 | |
AP | 90.73 | 64.73 | 99.01 | 95.30 | 92.54 | 85.28 | 67.99 | 91.84 | 96.17 | 86.56 | |
HP-YOLOv8 | P | 96.87 | 97.56 | 98.4 | 92.34 | 96.45 | 94.87 | 91.96 | 95.45 | 98.78 | 93.71 |
R | 86.65 | 97.50 | 93.97 | 93.48 | 97.89 | 87.62 | 73.45 | 87.21 | 98.86 | 80.67 | |
F1 | 91.53 | 97.53 | 96.15 | 92.91 | 97.17 | 91.16 | 81.81 | 91.08 | 98.16 | 86.77 | |
AP | 91.15 | 95.45 | 98.32 | 96.66 | 99.33 | 91.84 | 88.63 | 92.06 | 95.84 | 89.20 |
Model | Class | Van | Pedestrian | Car | Bicycle | Person | Motor | Bus | Tricycle | Truck | Awning Tricycle |
---|---|---|---|---|---|---|---|---|---|---|---|
YOLOv8 | P | 48.47 | 46.87 | 84.98 | 13.78 | 38.07 | 50.26 | 61.72 | 31.88 | 42.87 | 17.87 |
R | 38.74 | 35.89 | 71.28 | 8.32 | 26.81 | 41.63 | 52.42 | 23.69 | 30.76 | 10.43 | |
F1 | 43.29 | 40.90 | 77.73 | 10.64 | 31.67 | 45.54 | 56.74 | 27.38 | 36.12 | 13.32 | |
AP | 42.75 | 41.37 | 76.89 | 11.35 | 29.78 | 44.82 | 56.32 | 26.93 | 35.49 | 14.10 | |
HP-YOLOv8 | P | 62.86 | 63.56 | 92.43 | 42.65 | 53.78 | 63.41 | 73.90 | 44.98 | 47.88 | 37.65 |
R | 52.56 | 58.72 | 90.02 | 35.62 | 44.69 | 58.32 | 67.54 | 34.12 | 41.42 | 28.64 | |
F1 | 57.35 | 61.05 | 91.21 | 38.90 | 48.95 | 60.80 | 70.59 | 39.05 | 44.48 | 32.64 | |
AP | 57.45 | 60.30 | 90.05 | 37.55 | 48.22 | 60.41 | 69.77 | 37.62 | 43.33 | 30.27 |
Model | Params | FPS | P | R | F1 | [email protected] | [email protected]:0.95 | |||
---|---|---|---|---|---|---|---|---|---|---|
YOLOv8 | C2f-DM | BGFPN | SMPDIoU | |||||||
🗸 | 43.41 M | 75.78 | 89.18 | 89.27 | 89.22 | 89.82 | 57.01 | |||
🗸 | 🗸 | 44.14 M | 63.35 | 89.86 | 91.36 | 90.60 | 91.52 | 64.23 | ||
🗸 | 🗸 | 24.61 M | 60.49 | 91.78 | 92.41 | 92.09 | 92.56 | 67.78 | ||
🗸 | 🗸 | 43.61 M | 75.78 | 90.05 | 91.54 | 90.79 | 91.45 | 64.12 | ||
🗸 | 🗸 | 🗸 | 28.52 M | 55.46 | 91.89 | 93.78 | 92.82 | 93.98 | 69.78 | |
🗸 | 🗸 | 🗸 | 🗸 | 28.52 M | 55.46 | 92.21 | 94.22 | 93.21 | 95.11 | 72.03 |
Model | P | R | F1 | [email protected] | [email protected]:0.95 | Params | FPS |
---|---|---|---|---|---|---|---|
Faster R-CNN [60] | 87.78 | 82.39 | 84.97 | 85.46 | 54.45 | 42.47 M | 31.73 |
Cascade R-CNN [31] | 89.54 | 84.0 | 86.73 | 86.21 | 55.31 | 70.62 M | 26.48 |
CenterNet [32] | 87.92 | 86.54 | 87.23 | 87.79 | 56.14 | 33.34 M | 34.37 |
Dynamic-RCNN [59] | 87.36 | 82.88 | 85.07 | 85.30 | 55.86 | 42.78 M | 31.35 |
LSKNet [37] | 88.05 | 85.37 | 86.70 | 87.74 | 56.35 | 29.88 M | 48.75 |
TPH-YOLO [38] | 90.52 | 89.79 | 90.15 | 90.46 | 57.32 | 53.59 M | 56.26 |
SuperYOLO [39] | 91.89 | 90.21 | 91.05 | 90.78 | 59.30 | 54.66 M | 32.21 |
LAR-YOLOv8 [25] | 94.04 | 90.92 | 92.46 | 92.92 | 61.55 | 28.56 M | 54.89 |
YOLOv8 | 91.38 | 86.32 | 88.80 | 89.82 | 57.76 | 44.60 M | 75.78 |
YOLOv9 [57] | 93.45 | 89.65 | 91.53 | 92.05 | 60.48 | 38.78 M | 79.64 |
YOLOv10 [58] | 94.47 | 91.02 | 92.73 | 93.35 | 65.82 | 28.21 M | 85.71 |
HP-YOLOv8 (Ours) | 96.75 | 93.05 | 94.88 | 95.11 | 72.03 | 28.52 M | 55.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, G.; Zhu, S.; Zhang, L.; Qi, M. HP-YOLOv8: High-Precision Small Object Detection Algorithm for Remote Sensing Images. Sensors 2024, 24, 4858. https://doi.org/10.3390/s24154858
Yao G, Zhu S, Zhang L, Qi M. HP-YOLOv8: High-Precision Small Object Detection Algorithm for Remote Sensing Images. Sensors. 2024; 24(15):4858. https://doi.org/10.3390/s24154858
Chicago/Turabian StyleYao, Guangzhen, Sandong Zhu, Long Zhang, and Miao Qi. 2024. "HP-YOLOv8: High-Precision Small Object Detection Algorithm for Remote Sensing Images" Sensors 24, no. 15: 4858. https://doi.org/10.3390/s24154858
APA StyleYao, G., Zhu, S., Zhang, L., & Qi, M. (2024). HP-YOLOv8: High-Precision Small Object Detection Algorithm for Remote Sensing Images. Sensors, 24(15), 4858. https://doi.org/10.3390/s24154858