A High-Performance Anti-Noise Algorithm for Arrhythmia Recognition
<p>Structure of conventional BLS.</p> "> Figure 2
<p>Schematic of the proposed model.</p> "> Figure 3
<p>General flowchart of the experimental methodology.</p> "> Figure 4
<p>Schematic illustrations of four types of heartbeats: (<b>a</b>) N-type heartbeats, (<b>b</b>) S-type heartbeats, (<b>c</b>) V-type heartbeats, and (<b>d</b>) F-type heartbeats.</p> "> Figure 5
<p>Schematic diagrams of heartbeats for different signal-to-noise ratios.Where, <a href="#sensors-24-04558-f005" class="html-fig">Figure 5</a> (<b>a</b>–<b>f</b>) shows the heartbeat schematic for signal-to-noise ratios of -6dB, 0dB, 6dB, 12dB, 18dB, 24dB, respectively.</p> "> Figure 6
<p>Two-dimensional conversion of a heartbeat signal.</p> "> Figure 7
<p>Performance comparison on DS1 for different numbers of enhancement nodes.</p> ">
Abstract
:1. Introduction
1.1. Background
1.2. Related Works
1.3. Proposed Method
- ICA is employed to separate mixed signals, thereby obtaining multiple independent signal components. This is particularly useful for processing ECG signals, as they are often composed of signals from multiple physiological sources. Using ICA, the mixed signals can be separated into individual components, allowing for a more accurate analysis and understanding of ECG data;
- PCA is typically used to eliminate data correlations. In our study, we employ a multi-lead parallel cascaded convolutional structure for the layered learning of arrhythmia features. The convolutional kernels of the two layers are generated by the ICA and PCA algorithms. This cascaded convolutional structure effectively extracts latent and meaningful information when dealing with noisy data;
- We are using ICA convolution with PCA convolution to enhance the feature extraction capability of the BLS. PCA convolution with ICA convolution is used to replace the shallow-feature-mapping process in the BLS, which, in turn, improves the noise robustness of the model.
1.4. Arrangement
2. Review of the Broad Learning System
3. Proposed COBLS
3.1. COBLS
Algorithm 1: The proposed COBLS |
Inputs: heartbeat matrix and heartbeat label |
Outputs: network weight |
1: for ICA convolution do |
2: Calculate the whitening matrix () using Equation (8). |
3: Calculate the unmixing matrix () using the FastICA toolkit. |
4: Calculate the ICA convolutional kernel () using Equation (9). |
5: The initial eigenmatrix () is calculated using Equation (10). |
6: end for |
7: for PCA convolution do |
8: Construct the second-order pending matrix (). |
9: Calculate the covariance matrix (). |
10: Extract the co-eigenvector. |
11: Calculate the PCA convolutional kernel () using Equation (11). |
12: Calculate the second-order eigenmatrix () using Equation (12). |
13: end for |
14: Calculate the decimal matrix () using Equation (13). |
15: Calculate the histogram feature vector (). |
16: Take as the feature node () of the network. |
17: for j = 1:m do |
18: Generate random matrices and . |
19: Calculate the enhancement node () using Equation (2). |
20: end for |
21: Calculate the network weight () using Equation (4). |
3.2. ICA Convolution
3.3. PCA Convolution
3.4. Feature Coding
4. Experimental Validations
4.1. Materials
4.2. Signal Pre-Processing
4.3. Evaluation Metrics
5. Experimental Results and Analysis
5.1. Arrhythmia Recognition Experimental Results
5.2. Experimental Results of Noise Robustness
5.3. COBLS Model Performance Experiments
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mensah, G.A.; Roth, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J. Am. Coll. Cardiol. 2019, 74, 2529–2532. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022, 145, 153–639. [Google Scholar]
- Ribeiro, A.H.; Ribeiro, M.H.; Paixão, G.M.; Oliveira, D.M.; Gomes, P.R.; Canazart, J.A.; Ferreira, M.P.; Andersson, C.R.; Macfarlane, P.W.; Meira, W., Jr.; et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 2020, 11, 1760. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.; Whitsel, L.; Khavjou, O.; Phelps, D.; Leib, A. Projections of cardiovascular disease prevalence and costs. RTI Int. 2016, 38, 1–54. [Google Scholar]
- Nguyen, M.T.; Nguyen, T.H.; Le, H.C. A review of progress and an advanced method for shock advice algorithms in automated external defibrillators. Biomed. Eng. Online 2022, 21, 22. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Zhang, Y.; Ran, S.; Cheng, C.; Yang, G. Diagnosis of arrhythmias with few abnormal ECG samples using metric-based meta learning. Comput. Biol. Med. 2023, 153, 106465. [Google Scholar] [CrossRef]
- Tuncer, T.; Dogan, S.; Pławiak, P.; Acharya, U.R. Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowl.-Based Syst. 2019, 186, 104923. [Google Scholar] [CrossRef]
- Marinho, L.B.; de MM Nascimento, N.; Souza, J.W.; Gurgel, M.V.; Rebouças Filho, P.P.; de Albuquerque, V.H. A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Future Gener. Comput. Syst. 2019, 97, 564–577. [Google Scholar] [CrossRef]
- Öztürk, Ş.; Akdemir, B. A convolutional neural network model for semantic segmentation of mitotic events in microscopy images. Neural Comput. Appl. 2019, 31, 3719–3728. [Google Scholar] [CrossRef]
- Yang, G.; Ding, F. Associative memory optimized method on deep neural networks for image classification. Inf. Sci. 2020, 533, 108–119. [Google Scholar] [CrossRef]
- Khattak, A.; Asghar, M.Z.; Ali, M.; Batool, U. An efficient deep learning technique for facial emotion recognition. Multimed. Tools Appl. 2022, 81, 1649–1683. [Google Scholar] [CrossRef]
- Liu, H.; Xu, J.; Wu, Y.; Guo, Q.; Ibragimov, B.; Xing, L. Learning deconvolutional deep neural network for high resolution medical image reconstruction. Inf. Sci. 2018, 468, 142–154. [Google Scholar] [CrossRef]
- Qin, L.; Xie, Y.; Liu, X.; Yuan, X.; Wang, H. An end-to-end 12-leading electrocardiogram diagnosis system based on deformable convolutional neural network with good antinoise ability. IEEE Trans. Instrum. Meas. 2021, 70, 1–3. [Google Scholar] [CrossRef]
- Lv, Q.J.; Chen, H.Y.; Zhong, W.B.; Wang, Y.Y.; Song, J.Y.; Guo, S.D.; Qi, L.X.; Chen, C.Y. A multi-task group Bi-LSTM networks application on electrocardiogram classification. IEEE J. Transl. Eng. Health Med. 2019, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Eleyan, A.; Alboghbaish, E. Electrocardiogram Signals Classification Using Deep-Learning-Based Incorporated Convolutional Neural Network and Long Short-Term Memory Framework. Computers 2024, 13, 55. [Google Scholar] [CrossRef]
- Xu, S.S.; Mak, M.W.; Chang, C. Inter-patient ECG classification with i-vector based unsupervised patient adaptation. Expert Syst. Appl. 2022, 210, 118410. [Google Scholar] [CrossRef]
- Park, J.; An, J.; Kim, J.; Jung, S.; Gil, Y.; Jang, Y.; Lee, K.; Oh, I.Y. Study on the use of standard 12-lead ECG data for rhythm-type ECG classification problems. Comput. Methods Programs Biomed. 2022, 214, 106521. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Jiang, M.; Wei, L.; Zhang, J.; Wang, Z.; Wei, B.; Xia, L. Automated arrhythmia classification using depthwise separable convolutional neural network with focal loss. Biomed. Signal Process. Control 2021, 69, 102843. [Google Scholar] [CrossRef]
- Islam, M.S.; Hasan, K.F.; Sultana, S.; Uddin, S.; Quinn, J.M.; Moni, M.A. HARDC: A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN. Neural Netw. 2023, 162, 271–287. [Google Scholar] [CrossRef]
- Hu, R.; Chen, J.; Zhou, L. A transformer-based deep neural network for arrhythmia detection using continuous ECG signals. Comput. Biol. Med. 2022, 144, 105325. [Google Scholar] [CrossRef]
- Guo, C.; Yin, B.; Hu, J. An Electrocardiogram Classification Using a Multiscale Convolutional Causal Attention Network. Electronics 2024, 13, 326. [Google Scholar] [CrossRef]
- Chen, C.P.; Liu, Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Li, C. Online semisupervised broad learning system for industrial fault diagnosis. IEEE Trans. Ind. Inform. 2021, 17, 6644–6654. [Google Scholar] [CrossRef]
- Hsu, C.F.; Chen, B.R.; Wu, B.F. Broad-learning recurrent Hermite neural control for unknown nonlinear systems. Knowl.-Based Syst. 2022, 242, 108263. [Google Scholar] [CrossRef]
- Ye, H.; Li, H.; Chen, C.P. Adaptive deep cascade broad learning system and its application in image denoising. IEEE Trans. Cybern. 2020, 51, 4450–4463. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yu, Z.; Chen, C.P.; Cao, W.; You, J.; Wong, H.S. Incremental weighted ensemble broad learning system for imbalanced data. IEEE Trans. Knowl. Data Eng. 2021, 34, 5809–5824. [Google Scholar] [CrossRef]
- Guo, L.; Li, R.; Jiang, B. An ensemble broad learning scheme for semisupervised vehicle type classification. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5287–5297. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Si, Y.; Yang, W.; Zhang, G. Active broad learning system for ECG arrhythmia classification. Measurement 2021, 185, 110040. [Google Scholar] [CrossRef]
- Fan, W.; Si, Y.; Yang, W.; Sun, M. Class-specific weighted broad learning system for imbalanced heartbeat classification. Inf. Sci. 2022, 610, 525–548. [Google Scholar] [CrossRef]
- Mark, R.; Moody, G. MIT-BIH Arrhythmia Database Directory. 1997. Available online: http://ecg.mit.edu/dbinfo.html (accessed on 10 May 2024).
- Moody, G.B.; Muldrow, W.E.; Mark, R.G. A noise stress test for arrhythmia detectors. Comput. Cardiol. 1984, 11, 381–384. [Google Scholar]
- Yang, W.; Si, Y.; Zhang, G.; Wang, D.; Sun, M.; Fan, W.; Liu, X.; Li, L. A novel method for automated congestive heart failure and coronary artery disease recognition using THC-Net. Inf. Sci. 2021, 568, 427–447. [Google Scholar] [CrossRef]
- Shan, L.; Li, Y.; Jiang, H.; Zhou, P.; Niu, J.; Liu, R.; Wei, Y.; Peng, J.; Yu, H.; Sha, X.; et al. Abnormal ECG detection based on an adversarial autoencoder. Front. Physiol. 2022, 13, 961724. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, M.; Lakshmi, A.; Rajasekaran, M.P.; Manjunathan, A.J. Multiscale Laplacian graph kernel features combined with tree deep convolutional neural network for the detection of ECG arrhythmia. Biomed. Signal Process. Control 2022, 76, 103639. [Google Scholar] [CrossRef]
- Farag, M.M. A tiny matched filter-based CNN for inter-patient ECG classification and arrhythmia detection at the edge. Sensors 2023, 23, 1365. [Google Scholar] [CrossRef] [PubMed]
- Chon, S.; Ha, K.W.; Park, S.; Jung, S. An ECG Beat Classification Method using Multi-kernel ResNet with Transformer. In Proceedings of the 2023 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Republic of Korea, 13–16 February 2023; IEEE: New York, NY, USA, 2023; pp. 140–144. [Google Scholar]
- Zhang, H.; Gu, H.; Chen, G.; Liu, M.; Wang, Z.; Cao, F. An atrial fibrillation classification method based on an outlier data filtering strategy and modified residual block of the feature pyramid network. Biomed. Signal Process. Control 2024, 92, 106107. [Google Scholar] [CrossRef]
- Wu, W.; Huang, Y.; Wu, X. SRT: Improved transformer-based model for classification of 2D heartbeat images. Biomed. Signal Process. Control 2024, 88, 105017. [Google Scholar] [CrossRef]
AAMI Classes | Heartbeat Types |
---|---|
Non-ectopic beats (N) | Normal beat; Left bundle branch block beat; Right bundle branch block beat; Atrial escape beat; Nodal escape beat |
Supraventricular ectopic beats (S) | Atrial premature beat; Aberrated atrial premature beat; Nodal premature beat; Supraventricular premature beat |
Ventricular ectopic beats (V) | Premature ventricular contraction ventricular escape beat |
Fusion beats (F) | Fusion of ventricular and normal beats |
Unknown beats (Q) | Paced beat; Fusion of paced and normal beats; Unclassifiable beat |
Dataset | Classes | Class Distribution |
---|---|---|
DS1 | N, S, V, F | 89,886; 2773; 6996; 802 |
DS2 | N, S | 89,886; 2273 |
DS3 | N, V | 89,886; 6996 |
DS4 | N, F | 89,886; 802 |
DS5 | Nb, Ab | 89,886; 10571 |
Record | SNR (dB) | Record | SNR (dB) |
---|---|---|---|
118e24 | 24 | 119e24 | 24 |
118e18 | 18 | 119e18 | 18 |
118e12 | 12 | 119e12 | 12 |
118e06 | 6 | 119e06 | 6 |
118e00 | 0 | 119e00 | 0 |
118e_6 | −6 | 119e_6 | −6 |
Dataset | Classes | Class Distribution |
---|---|---|
DS6 | Nb, Ab | 3082; 888 |
Dataset | Predicted | (%) | (%) | (%) | F1-score (%) | (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Actual | N | S | V | F | ||||||
DS1 | N | 89,768 | 53 | 60 | 5 | 99.24 | 99.28 | 99.87 | 99.57 | 93.87 |
S | 326 | 2420 | 26 | 1 | 99.58 | 97.38 | 87.27 | 92.05 | 99.93 | |
V | 178 | 10 | 6770 | 38 | 99.63 | 97.96 | 96.77 | 97.36 | 99.85 | |
F | 144 | 2 | 55 | 601 | 99.76 | 93.18 | 74.94 | 83.07 | 99.96 | |
OA (%) | 99.11 |
Dataset | Predicted | (%) | (%) | (%) | F1-score (%) | (%) | ||
---|---|---|---|---|---|---|---|---|
Actual | N | S | ||||||
DS2 | N | 89,819 | 67 | 99.55 | 99.62 | 99.93 | 99.77 | 87.49 |
S | 347 | 2426 | 99.55 | 97.31 | 87.49 | 92.14 | 99.93 | |
DS3 | N | 89,802 | 85 | 99.65 | 99.72 | 99.91 | 99.81 | 96.37 |
V | 254 | 6743 | 99.65 | 98.76 | 96.37 | 97.55 | 99.91 | |
DS4 | N | 89,878 | 8 | 99.78 | 99.79 | 99.99 | 99.89 | 76.56 |
F | 188 | 614 | 99.78 | 98.71 | 76.56 | 86.24 | 99.99 |
Dataset | Predicted | (%) | (%) | (%) | F1-score (%) | |||
---|---|---|---|---|---|---|---|---|
Actual | Nb | Ab | ||||||
DS5 | Nb | 89,673 | 213 | 99.01 | 99.13 | 99.76 | 99.45 | 92.56 |
Ab | 786 | 9785 | 99.01 | 97.87 | 92.56 | 95.14 | 99.76 | |
Average (%) | 99.01 | 98.50 | 96.16 | 97.30 | 96.16 | |||
OA (%) | 99.01 |
SNR (dB) | COBLS | BLS | |||||
---|---|---|---|---|---|---|---|
Predicted | Predicted | ||||||
Actual | Nb | Ab | OA (%) | Nb | Ab | OA (%) | |
24 | Nb | 3082 | 0 | 3082 | 0 | ||
Ab | 0 | 888 | 100 | 0 | 888 | 100 | |
18 | Nb | 3082 | 0 | 3082 | 0 | ||
Ab | 0 | 888 | 100 | 0 | 888 | 100 | |
12 | Nb | 3082 | 0 | 3082 | 2 | ||
Ab | 0 | 888 | 100 | 0 | 888 | ||
6 | Nb | 3082 | 0 | 3082 | 6 | ||
Ab | 2 | 886 | 99.95 | 0 | 886 | 99.85 | |
0 | Nb | 3074 | 8 | 3074 | 8 | ||
Ab | 4 | 884 | 99.70 | 10 | 884 | ||
−6 | Nb | 3058 | 24 | 3058 | 35 | ||
Ab | 28 | 860 | 98.69 | 27 | 860 |
COBLS | BLS | CNN | LSTM | |||||
---|---|---|---|---|---|---|---|---|
Noise (dB) | Training Time (s) | Test Time (s) | Training Time (s) | Test Time (s) | Training Time (s) | Test Time (s) | Training Time (s) | Test Time (s) |
24 | 11.03 | 0.36 | 4.32 | 0.08 | 27.38 | 0.44 | 191.22 | 0.32 |
18 | 11.39 | 0.38 | 4.30 | 0.08 | 27.70 | 0.46 | 190.35 | 0.32 |
12 | 11.17 | 0.35 | 5.17 | 0.08 | 27.54 | 0.36 | 190.64 | 0.32 |
6 | 11.09 | 0.41 | 4.25 | 0.07 | 27.26 | 0.42 | 191.01 | 0.32 |
0 | 11.02 | 0.39 | 4.40 | 0.08 | 27.92 | 0.46 | 190.65 | 0.32 |
−6 | 11.20 | 0.38 | 4.29 | 0.08 | 27.90 | 0.43 | 190.21 | 0.31 |
Authors | Method | Database | Noise Removal | Class | OA (%)/AF (%) |
---|---|---|---|---|---|
Shan et al. [33] (2022) | ECG-AAE | MIT-BIH arrhythmia DB | YES | 2(Nb, Ab) | 96.73/96.66 |
Ramkumar, M. et al. [34] (2022) | FFREWT-MLGK-TDCNN | MIT-BIH arrhythmia DB | YES | 2(Nb, Ab) | 98.00/87.00 |
Farag et al. [35] (2023) | MF-based CNN | MIT-BIH arrhythmia DB | NO | 3(N, S, V) | 98.18/92.17 |
S. Chon et al. [36] (2023) | MKResNet+XForm | MIT-BIH arrhythmia DB | NO | 4(N, S, V, F) | 97.80/87.90 |
Zhang et al. [37] (2024) | MRFPN (with L-ROS) | MIT-BIH arrhythmia DB | NO | 2(Nb, Ab) | 95.04/97.19 |
Wu et al. [38] (2024) | SC-RGA Transformer | MIT-BIH arrhythmia DB | NO | 5(N, S, V, F, Q) | 95.70/82.60 |
This work | COBLS | MIT-BIH arrhythmia DB | NO | 2(Nb, Ab) | 99.01/97.30 |
This work | COBLS | MIT-BIH arrhythmia DB | NO | 4(N, S, V, F) | 99.11/93.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Si, Y.; Zhang, Y.; Sun, M.; Yang, W. A High-Performance Anti-Noise Algorithm for Arrhythmia Recognition. Sensors 2024, 24, 4558. https://doi.org/10.3390/s24144558
Feng J, Si Y, Zhang Y, Sun M, Yang W. A High-Performance Anti-Noise Algorithm for Arrhythmia Recognition. Sensors. 2024; 24(14):4558. https://doi.org/10.3390/s24144558
Chicago/Turabian StyleFeng, Jianchao, Yujuan Si, Yu Zhang, Meiqi Sun, and Wenke Yang. 2024. "A High-Performance Anti-Noise Algorithm for Arrhythmia Recognition" Sensors 24, no. 14: 4558. https://doi.org/10.3390/s24144558
APA StyleFeng, J., Si, Y., Zhang, Y., Sun, M., & Yang, W. (2024). A High-Performance Anti-Noise Algorithm for Arrhythmia Recognition. Sensors, 24(14), 4558. https://doi.org/10.3390/s24144558