A Visual Measurement Method for Deep Holes in Composite Material Aerospace Components
<p>Visual measurement of deep holes in the cavity-shaped composite material workpiece.</p> "> Figure 2
<p>Imaging characteristics of deep holes based on the pinhole perspective model.</p> "> Figure 3
<p>Local feature analysis of visual imaging for deep holes in the composite material surface.</p> "> Figure 4
<p>Three typical local distributions of grayscale values in assembly hole imaging. (<b>a</b>) The composite material surface with the grayscale changing sharply in each direction, as indicated by the blue arrows; (<b>b</b>) the hole inlet edge with the grayscale changing sharply only in the radial direction, as highlighted by the red arrows; (<b>c</b>) the hole outlet edge with the grayscale changing gradually in the radial direction, as highlighted by the red arrows.</p> "> Figure 5
<p>Radial distribution of grayscale values around the hole inlet edge. (<b>a</b>) Sample selected from the original image along the radial direction around the hole inlet edge, as highlighted between the red arrows; (<b>b</b>) the one-dimensional pixel distribution with a significant difference in the grayscale change rate at the inlet edge.</p> "> Figure 6
<p>Radial distribution of grayscale values around the hole outlet edge. (<b>a</b>) Sample selected from the original image along the radial direction around the hole outlet edge, as highlighted between the red arrows; (<b>b</b>) the one-dimensional pixel distribution with a moderate grayscale changing through the outlet edge.</p> "> Figure 7
<p>Sectorization of images and RPL operator for each sector. (<b>a</b>) The eight sectors are divided evenly from the image according to the central symmetry principle, with the red arrows indicating the radial principal direction of each sector; (<b>b</b>) 3 × 3 Laplacian operator for each sector with the members along the radial direction set as 0.</p> "> Figure 8
<p>The effect of sectorization RPL transform. (<b>a</b>) Each sector filled out as rectangles for Laplacian transform. (<b>b</b>) The stitched image after processing.</p> "> Figure 9
<p>One-dimensional radial pixel distribution before and after RPL transform. (<b>a</b>) The hole outlet features are suppressed well; (<b>b</b>) the hole inlet features are enhanced.</p> "> Figure 10
<p>The measurement procedure of deep holes in the composite material surface.</p> "> Figure 11
<p>YOLOv3 neural network structure.</p> "> Figure 12
<p>Image processing for identifying the hole inlet edge.</p> "> Figure 13
<p>A RANSAC-based method for pseudo-center extraction and outlier removal.</p> "> Figure 14
<p>An inflection point searching method based on the regularity of slope distribution. (<b>a</b>) By selecting two points, denoted as p<span class="html-italic"><sub>i</sub></span> and p<span class="html-italic"><sub>i+n</sub></span>, from the result of RANSAC with an interval of <span class="html-italic">n</span>, the line passing through the two points has a slope of <span class="html-italic">k</span><sub>0</sub>. Meanwhile, the perpendicular direction of the line passing through both the pseudo center and the midpoint of p<span class="html-italic"><sub>i</sub></span> and p<span class="html-italic"><sub>i+n</sub></span> has a slope of <span class="html-italic">k</span>. (<b>b</b>) Inflection point sets searched from the hole edge.</p> "> Figure 15
<p>Assembly hole measurement result.</p> "> Figure 16
<p>Visual measurement experiment platform for measuring deep holes on a composite material surface. (<b>a</b>) Overall design of the experimental platform; (<b>b</b>) the visual measurement site.</p> "> Figure 17
<p>Comparison results of LEP and the proposed RPL.</p> "> Figure 18
<p>Visual measurement results of deep holes in CFRP workpiece. Method 1 utilizes the Hough Circle Transform; Method 2 utilizes the U-Net network model.</p> "> Figure 19
<p>Measurement of holes on a composite material workpiece with the CMM. (<b>a</b>) The measurement site; (<b>b</b>) the parameters to be measured.</p> "> Figure 20
<p>Visual measurement results of two adjacent holes.</p> ">
Abstract
:1. Introduction
2. Edge Enhancement Algorithm for Deep Hole Images of Composite Components based on Image Radial Distribution
2.1. Imaging Characteristics of Deep Holes in Composite Material Components
2.2. Hole Edge Enhancement Algorithm Based on Radial Penalty Laplacian Operator
3. Deep Hole Measurement Method on the Composite Material Surface
3.1. Extract the ROI
3.2. Identify the Hole Inlet Edge
3.3. Inflection Point Removal and Hole-Fitting
4. Experiments and Results
4.1. Experimental Setup
4.2. Experimental Results
4.3. Measurement Accuracy Verification
5. Conclusions
- (1)
- The RPL algorithm demonstrates substantial effectiveness in the image processing of deep holes on a composite material surface, effectively mitigating surface texture-related and smoothing noise caused by halo effects at the hole outlet.
- (2)
- The proposed inflection point removal and hole fitting method effectively removes noise from the contour point set, ensuring the precise extraction of the hole edge.
- (3)
- The comparison experimental results validated by the Coordinate Measuring Machine (CMM) verify that the visual measurement accuracy of the hole size reaches 0.03 mm, which meets the accuracy requirement in the aerospace component assembly process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.Y.; Geier, N.; Shen, J.X.; Krishnaraj, V.; Samsudeensadham, S. A review on CFRP drilling: Fundamental mechanisms, damage issues, and approaches toward high-quality drilling. J. Mater. Res. Technol. 2023, 24, 9677–9707. [Google Scholar] [CrossRef]
- Haag, J.; Mertens, T.; Kotte, L.; Kaskel, S. Investigation on Atmospheric Plasma Surface Treatment for Structural Bonding on Titanium and CFRP. In Proceedings of the 2015 IEEE International Conference on Plasma Sciences (ICOPS), Antalya, Turkey, 24–28 May 2015. [Google Scholar]
- Fernández-Pérez, J.; Cantero, J.L.; Díaz-Alvarez, J.; Miguélez, M.H. Influence of cutting parameters on tool wear and hole quality in composite aerospace components drilling. Compos. Struct. 2017, 178, 157–161. [Google Scholar] [CrossRef]
- Feito, N.; Diaz-Alvarez, J.; López-Puente, J.; Miguelez, M.H. Numerical analysis of the influence of tool wear and special cutting geometry when drilling woven CFRPs. Compos. Struct. 2015, 138, 285–294. [Google Scholar] [CrossRef]
- Chishti, M.; Wang, C.H.; Thomson, R.S.; Orifici, A.C. Experimental investigation of damage progression and strength of countersunk composite joints. Compos. Struct. 2011, 94, 865–873. [Google Scholar] [CrossRef]
- Qi, Z.C.; Liang, G.Y.; Dai, Y.Z.; Qiu, J.P.; Hao, H.J. The effects of countersink depth on fatigue performance of CFRP joint. Int. J. Adv. Manuf. Tech. 2023, 128, 4397–4412. [Google Scholar] [CrossRef]
- Liang, J.; Bi, S.S. Design and experimental study of an end effector for robotic drilling. Int. J. Adv. Manuf. Tech. 2010, 50, 399–407. [Google Scholar] [CrossRef]
- Frommknecht, A.; Kuehnle, J.; Effenberger, I.; Pidan, S. Multi-sensor measurement system for robotic drilling. Robot. Cim. Int. Manuf. 2017, 47, 4–10. [Google Scholar] [CrossRef]
- Olsson, T.; Haage, M.; Kihlman, H.; Johansson, R.; Nilsson, K.; Robertsson, A.; Björkman, M.; Isaksson, R.; Ossbahr, G.; Brogårdh, T. Cost-efficient drilling using industrial robots with high-bandwidth force feedback. Robot. Cim. Int. Manuf. 2009, 26, 24–38. [Google Scholar] [CrossRef]
- Santos, K.R.D.; Villani, E.; de Oliveira, W.R.; Dttman, A. Comparison of visual servoing technologies for robotized aerospace structural assembly and inspection. Robot. Cim. Int. Manuf. 2022, 73, 102237. [Google Scholar] [CrossRef]
- Zhu, W.D.; Mei, B.A.; Yan, G.R.; Ke, Y.L. Measurement error analysis and accuracy enhancement of 2D vision system for robotic drilling. Robot. Cim. Int. Manuf. 2013, 30, 160–171. [Google Scholar] [CrossRef]
- Caggiano, A.; Nele, L. Comparison of drilled hole quality evaluation in CFRP/CFRP stacks using optical and ultrasonic non-destructive inspection. Mach. Sci. Technol. 2018, 22, 865–880. [Google Scholar] [CrossRef]
- Xia, R.B.; Su, R.; Zhao, J.B.; Chen, Y.L.; Fu, S.P.; Tao, L.M.; Xia, Z.Y. An accurate and robust method for the measurement of circular holes based on binocular vision. Meas. Sci. Technol. 2020, 31, 025006. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, W.D.; Ke, Y.L. Pose alignment of aircraft structures with distance sensors and CCD cameras. Robot. Cim. Int. Manuf. 2017, 48, 30–38. [Google Scholar] [CrossRef]
- Mei, B.; Zhu, W.D.; Yuan, K.Z.; Ke, Y.L. Robot base frame calibration with a 2D vision system for mobile robotic drilling. Int. J. Adv. Manuf. Tech. 2015, 80, 1903–1917. [Google Scholar] [CrossRef]
- Duda, R.O.; Peter Hart, E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Xu, L.; Oja, E.; Kultanen, P. A New Curve Detection Method—Randomized Hough Transform (Rht). Pattern Recogn. Lett. 1990, 11, 331–338. [Google Scholar] [CrossRef]
- Saif, Y.; Yusof, Y.; Latif, K.; Kadir, A.Z.A.; Ahmed, M.B.L.; Adam, A.; Hatem, N.; Memon, D.A. Roundness Holes’ Measurement for milled workpiece using machine vision inspection system based on IoT structure: A case study. Measurement 2022, 195, 111072. [Google Scholar] [CrossRef]
- Yao, Z.J.; Yi, W.D. Curvature aided Hough transform for circle detection. Expert. Syst. Appl. 2015, 51, 26–33. [Google Scholar] [CrossRef]
- Zhao, C.F.; Ding, H.C.; Cao, G.H.; Zhang, Y. A New Method for Detecting Compensation Hole Parameters of Automobile Brake Master Cylinder Based on Machine Vision. J. Adv. Transport. 2021, 2021, 8864679. [Google Scholar] [CrossRef]
- Chen, T.C.; Chung, K.L. An efficient randomized algorithm for detecting circles. Comput. Vis. Image Underst. 2001, 83, 172–191. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Wiklund, K.; Andersson, M. A fast and robust circle detection method using isosceles triangles sampling. Pattern Recogn. 2015, 54, 218–228. [Google Scholar] [CrossRef]
- Hrechuk, A.; Bushlya, V.; Ståhl, J.E. Hole-quality evaluation in drilling fiber-reinforced composites. Compos. Struct. 2018, 204, 378–387. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Yuan, H.H.; Li, C.G. Circular hole detection algorithm based on image block. Multimed. Tools Appl. 2019, 78, 29659–29679. [Google Scholar] [CrossRef]
- Zhu, W.B.; Gu, H.; Su, W.M. A fast PCB hole detection method based on geometric features. Meas. Sci. Technol. 2020, 31, 095402. [Google Scholar] [CrossRef]
- Mei, B.; Zhu, W.D.; Yan, G.R.; Ke, Y.L. A new elliptic contour extraction method for reference hole detection in robotic drilling. Pattern Anal. Appl. 2015, 18, 695–712. [Google Scholar] [CrossRef]
- Hernandez, A.; Maghami, A.; Khoshdarregi, M. A Machine Vision Framework for Autonomous Inspection of Drilled Holes in CFRP Panels. In Proceedings of the 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 20–23 April 2020. [Google Scholar]
- Tan, J.; He, Z.S.; Dong, B.; Bai, Y.L.; Lei, L.; Li, J.Q. Fast and robust fringe projection profilometry for surface with hole discontinuities via backlighting. Meas. Sci. Technol. 2021, 32, 055002. [Google Scholar] [CrossRef]
- Davim, J.P.; Rubio, J.C.; Abrao, A.M. A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Compos. Sci. Technol. 2006, 67, 1939–1945. [Google Scholar] [CrossRef]
- Cui, J.C.; Liu, W.; Zhang, Y.; Han, L.; Yin, P.B.; Li, Y.J.; Zhou, M.D.; Wang, P. A visual inspection method for delamination extraction and quantification of carbon fiber reinforced plastic (CFRP). Measurement 2022, 196, 111252. [Google Scholar] [CrossRef]
- Nigro, M.; Sileo, M.; Pierri, F.; Genovese, K.; Bloisi, D.D.; Caccavale, F. Peg-in-Hole Using 3D Workpiece Reconstruction and CNN-based Hole Detection. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020. [Google Scholar]
- Li, G.H.; Yang, S.; Cao, S.M.; Zhu, W.D.; Ke, Y.L. A semi-supervised deep learning approach for circular hole detection on composite parts. Visual Comput. 2021, 37, 433–445. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Yue, H.J.; Sun, X.Y.; Yang, J.Y.; Wu, F. CID: Combined Image Denoising in Spatial and Frequency Domains Using Web Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Ahn, B.; Kim, Y.; Park, G.; Cho, N.I. Block-Matching Convolutional Neural Network (BMCNN): Improving CNN-Based Denoising by Block-Matched Inputs. In Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018. [Google Scholar]
- Aubert, G.; Kornprobst, P.J.S.N.Y. Mathematical Problems in Image Processing; Springer: Berlin, Germany, 2002; pp. 69–70. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Prasad, D.K.; Leung, M.K.H.; Cho, S.Y. Edge curvature and convexity based ellipse detection method. Pattern Recogn. 2012, 45, 3204–3221. [Google Scholar] [CrossRef]
- Everingham, M.; Eslami, S.M.A.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vision 2015, 111, 98–136. [Google Scholar] [CrossRef]
Method | IoU | Dice |
---|---|---|
Hough Circle Transform [16] | 0.6485 | 0.7868 |
U-Net with LEP semi-supervised [32] | 0.9020 | 0.9485 |
The proposed method | 0.9695 | 0.9845 |
r1 (mm) | r2 (mm) | r3 (mm) | r4 (mm) | l1 (mm) | l2 (mm) |
---|---|---|---|---|---|
5.055 | 5.053 | 5.046 | 5.043 | 19.998 | 19.954 |
Visual Measurement | CMM | Visual Measurement Error | |
---|---|---|---|
r1 | 5.035 mm | 5.055 mm | 0.020 mm |
r2 | 5.024 mm | 5.053 mm | 0.029 mm |
r3 | 5.025 mm | 5.046 mm | 0.021 mm |
r4 | 5.026 mm | 5.043 mm | 0.017 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Yang, J.; Yang, G.; Lu, H.; Dong, Z.; Kang, R.; Guo, D.; Qin, Y. A Visual Measurement Method for Deep Holes in Composite Material Aerospace Components. Sensors 2024, 24, 3786. https://doi.org/10.3390/s24123786
Meng F, Yang J, Yang G, Lu H, Dong Z, Kang R, Guo D, Qin Y. A Visual Measurement Method for Deep Holes in Composite Material Aerospace Components. Sensors. 2024; 24(12):3786. https://doi.org/10.3390/s24123786
Chicago/Turabian StyleMeng, Fantong, Jiankun Yang, Guolin Yang, Haibo Lu, Zhigang Dong, Renke Kang, Dongming Guo, and Yan Qin. 2024. "A Visual Measurement Method for Deep Holes in Composite Material Aerospace Components" Sensors 24, no. 12: 3786. https://doi.org/10.3390/s24123786
APA StyleMeng, F., Yang, J., Yang, G., Lu, H., Dong, Z., Kang, R., Guo, D., & Qin, Y. (2024). A Visual Measurement Method for Deep Holes in Composite Material Aerospace Components. Sensors, 24(12), 3786. https://doi.org/10.3390/s24123786