Signal Denoising of Traffic Speed Deflectometer Measurement Based on Partial Swarm Optimization–Variational Mode Decomposition Method
<p>The flowchart of PSO–VMD method.</p> "> Figure 2
<p>Synthetic signal and its four component signals.</p> "> Figure 3
<p>Input signal spectrum (<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mrow> <mover accent="true"> <mi>f</mi> <mo stretchy="true">^</mo> </mover> </mrow> <mi>n</mi> </msub> </mrow> <mo>|</mo> </mrow> <mo stretchy="false">(</mo> <mi>ω</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>).</p> "> Figure 4
<p>Evolution chart of the central frequencies <math display="inline"><semantics> <mi>ω</mi> </semantics></math>.</p> "> Figure 5
<p>Spectral decomposition (<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mrow> <mover accent="true"> <mi>μ</mi> <mo stretchy="true">^</mo> </mover> </mrow> <mi>k</mi> </msub> </mrow> <mo>|</mo> </mrow> <mo stretchy="false">(</mo> <mi>ω</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>).</p> "> Figure 6
<p>Original signal and recovered signal chart (v1).</p> "> Figure 7
<p>Original signal and recovered signal chart (v2).</p> "> Figure 8
<p>Original signal and recovered signal chart (v3).</p> "> Figure 9
<p>US9 within New Jersey. Google Earth™.</p> "> Figure 10
<p>Original deflection speed of US9: (<b>a</b>) The readings from Doppler sensor S100; (<b>b</b>) The readings from Doppler sensor S200; (<b>c</b>) The readings from Doppler sensor S300; (<b>d</b>) The readings from Doppler sensor S600; (<b>e</b>) The readings from Doppler sensor S900; (<b>f</b>) The readings from Doppler sensor S1500.</p> "> Figure 10 Cont.
<p>Original deflection speed of US9: (<b>a</b>) The readings from Doppler sensor S100; (<b>b</b>) The readings from Doppler sensor S200; (<b>c</b>) The readings from Doppler sensor S300; (<b>d</b>) The readings from Doppler sensor S600; (<b>e</b>) The readings from Doppler sensor S900; (<b>f</b>) The readings from Doppler sensor S1500.</p> "> Figure 11
<p>Fitness function curve.</p> "> Figure 12
<p>Deflection speed before and after denoising with PSO–VMD method. (<b>a</b>) The readings from Doppler sensor S100; (<b>b</b>) The readings from Doppler sensor S200; (<b>c</b>) The readings from Doppler sensor S300; (<b>d</b>) The readings from Doppler sensor S600; (<b>e</b>) The readings from Doppler sensor S900; (<b>f</b>) The readings from Doppler sensor S1500.</p> "> Figure 12 Cont.
<p>Deflection speed before and after denoising with PSO–VMD method. (<b>a</b>) The readings from Doppler sensor S100; (<b>b</b>) The readings from Doppler sensor S200; (<b>c</b>) The readings from Doppler sensor S300; (<b>d</b>) The readings from Doppler sensor S600; (<b>e</b>) The readings from Doppler sensor S900; (<b>f</b>) The readings from Doppler sensor S1500.</p> "> Figure 13
<p>Maximum deflection curve after denoising.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. TSD Noise Filtering Model
2.2. Principle of Variational Mode Decomposition
- (a)
- Initialize and n;
- (b)
- Update and according to the equation;
- (c)
- Update ;
- (d)
- Continue steps (b) to (c) until meeting the iteration criteria .
2.3. Principle of Particle Swarm Optimization Algorithm
2.4. Fitness Function
- (1)
- For a given N-dimensional time series , time series undergo coarse-graining transformation, resulting in a new sequence:
- (2)
- Define the dimensionality m of the phase space (m ≤ N − 2) and the similarity tolerance r, and reconstruct the phase space:
- (3)
- Introduce a fuzzy membership function:
- (4)
- For each i, calculate its average to obtain:
- (5)
- Define:
- (6)
- Therefore, the fuzzy entropy (FuzzyEn) of the original time series is as follows:
2.5. Evaluation Methods
3. Numerical Experiments
3.1. Denoising Based on the VMD Method
3.2. Result
4. Field Test Data Application Example
4.1. Deflection Speed
4.2. Noise Reduction
5. Conclusions
- (1)
- Utilizing variational mode decomposition (VMD), grounded in robust mathematical principles and offering rational outcomes, for denoising the original data post-error exclusion. The PSO optimization algorithm was employed to refine the hyperparameters K and α of variational mode decomposition, effectively addressing the challenge of manually determining K and α in conventional variational mode decomposition techniques.
- (2)
- Conducting numerical experiments and comparing real data measurements with the wavelet transform method, the PSO–VMD method is adaptive and can significantly improve the signal-to-noise ratio and root mean square error of the data, resulting in better noise reduction. The PSO–VMD method mentioned in this paper can effectively eliminate noise from TSD Doppler sensors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, B.; Ranjithan, S.R.; Kim, Y.R. New Relationships Between Falling Weight Deflectometer Deflections and Asphalt Pavement Layer Condition Indicators. Transp. Res. Rec. 2002, 1806, 48–56. [Google Scholar] [CrossRef]
- Flintsch, G.W.; Ferne, B.; Diefenderfer, B.; Katicha, S.; Bryce, J.; Nell, S. Evaluation of Traffic-Speed Deflectometers. Transp. Res. Rec. 2012, 2304, 37–46. [Google Scholar] [CrossRef]
- Rada, G.R.; Nazarian, S.; Visintine, B.A.; Siddharthan, R.; Thyagarajan, S. Pavement Structural Evaluation at the Network Level: Final Report; Report FHWA-HRT-15–074; US Federal Highway Administration: Washington, DC, USA, 2016. [Google Scholar]
- Katicha, S.W.; Bryce, J.; Flintsch, G.; Ferne, B. Estimating “True” Variability of Traffic Speed Deflectometer Deflection Slope Measurements. J. Transp. Eng. 2015, 141, 04014071. [Google Scholar] [CrossRef]
- Flintsch, G.; Katicha, S.; Bryce, J.; Ferne, B.; Nell, S.; Diefenderfer, B. Assessment of Continuous Pavement Deflection Measuring Technologies; The National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Nam, B.H.; Stokoe, K.H., 2nd; Youn, H. Enhanced Sensing and Data Processing System for Continuous Profiling of Pavement Deflection. Materials 2019, 12, 1653. [Google Scholar] [CrossRef]
- Katicha, S.W.; Flintsch, G.W.; Ferne, B. Optimal Averaging and Localized Weak Spot Identification of Traffic Speed Deflectometer Measurements. Transp. Res. Rec. J. Transp. Res. Board 2013, 2367, 43–52. [Google Scholar] [CrossRef]
- Craven, P.; Wahba, G. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 1978, 31, 377–403. [Google Scholar] [CrossRef]
- Katicha, S.W.; Flintsch, G.; Bryce, J.; Ferne, B. Wavelet Denoising of TSD Deflection Slope Measurements for Improved Pavement Structural Evaluation. Comput.-Aided Civ. Infrastruct. Eng. 2014, 29, 399–415. [Google Scholar] [CrossRef]
- Huang, N.E. Hilbert-Huang Transform and Its Applications; World Scientific: Singapore, 2014; Volume 16. [Google Scholar]
- Flandrin, P.; Rilling, G.; Goncalves, P. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 2004, 11, 112–114. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Bagheri, A.; Alipour, M.; Ozbulut, O.E.; Harris, D.K. Identification of flexural rigidity in bridges with limited structural information. J. Struct. Eng. 2018, 144, 04018126. [Google Scholar] [CrossRef]
- Li, D.; Jiang, F.; Chen, M.; Qian, T. Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks. Energy 2022, 238, 121981. [Google Scholar] [CrossRef]
- Li, H.; Liu, T.; Wu, X.; Chen, Q. An optimized VMD method and its applications in bearing fault diagnosis. Measurement 2020, 166, 108185. [Google Scholar] [CrossRef]
- Yang, X.-M.; Yi, T.-H.; Qu, C.-X.; Li, H.-N.; Liu, H. Modal identification of high-speed railway bridges through free-vibration detection. J. Eng. Mech. 2020, 146, 04020107. [Google Scholar] [CrossRef]
- Zhou, S.; Yao, Y.; Luo, X.; Jiang, N.; Niu, S. Dynamic response evaluation for single-hole bench carbon dioxide blasting based on the novel SSA–VMD–PCC method. Int. J. Geomech. 2023, 23, 04022248. [Google Scholar] [CrossRef]
- Yu, T.; Tang, Q.; Vinayaka, S. Identifying structural properties of a steel railway bridge for structural health monitoring using laser Doppler vibrometry. Autom. Constr. 2024, 160, 105320. [Google Scholar] [CrossRef]
- Hao, T.; Jing, L.; He, W. An automated GPR signal denoising scheme based on mode decomposition and principal component analysis. IEEE Geosci. Remote Sens. Lett. 2022, 20, 3500105. [Google Scholar] [CrossRef]
- Dong, Z.; Feng, X.; Zhou, H.; Lu, Q.; Liu, C.; Zeng, Z.; Li, J.; Liang, W. Date processing for Lunar Penetrating Radar of Chang’E-4 based on variational mode decomposition. In Proceedings of the 18th International Conference on Ground Penetrating Radar, Golden, CO, USA, 14–19 June 2020; Society of Exploration Geophysicists: Houston, TX, USA, 2020. [Google Scholar]
- Li, F.; Zhang, B.; Verma, S.; Marfurt, K.J. Seismic signal denoising using thresholded variational mode decomposition. Explor. Geophys. 2018, 49, 450–461. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, K. Research on carbon asset trading strategy based on PSO-VMD and deep reinforcement learning. J. Clean. Prod. 2024, 435, 140322. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: New York, NY, USA, 1995. [Google Scholar]
- The MathWorks Inc. MATLAB Version: 9.5(R2018b). The MathWorks Inc., 2018. Available online: https://ww2.mathworks.cn/products/matlab.html (accessed on 15 March 2024).
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using fuzzyen, apen, and sampen. Med. Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef]
- Sun, K.H.; He, S.B.; Yin, L.Z.; Duo, L.K. Applicattion of FuzzyEn algorithm to the analysis of complexity of chaotic sequence. Acta Phys. Sin. 2012, 61, 130507. [Google Scholar]
- Zhao, H.; Ding, Y.; Meng, L.; Qin, Z.; Yang, F.; Li, A. Bayesian Multiple Linear Regression and New Modeling Paradigm for Structural Deflection Robust to Data Time Lag and Abnormal Signal. IEEE Sens. J. 2023, 23, 19635–19647. [Google Scholar] [CrossRef]
- Muller, W.B.; Roberts, J. Revised approach to assessing traffic speed deflectometer data and field validation of deflection bowl predictions. Int. J. Pavement Eng. 2013, 14, 388–402. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, Y.; Zhao, H.; Yi, L.; Guo, T.; Li, A.; Zou, Y. Mixed Skewness Probability Modeling and Extreme Value Predicting for Physical System Input–Output Based on Full Bayesian Generalized Maximum-Likelihood Estimation. IEEE Trans. Instrum. Meas. 2024, 73, 3343742. [Google Scholar] [CrossRef]
Indicator | Original | VMD | PSO–VMD |
---|---|---|---|
r | 0.3823 | 0.4225 | 0.5459 |
RMSE | 0.1020 | 0.0787 | 0.0549 |
SNR | 17.1779 | 19.4284 | 22.4988 |
Indicator | Wavelet (sym2) [9] | PSO–VMD |
---|---|---|
r | 0.0604 | 0.4019 |
RMSE | 0.1777 | 0.0811 |
SNR | 12.3556 | 19.1676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Duan, Y.; Wang, H. Signal Denoising of Traffic Speed Deflectometer Measurement Based on Partial Swarm Optimization–Variational Mode Decomposition Method. Sensors 2024, 24, 3708. https://doi.org/10.3390/s24123708
Wu C, Duan Y, Wang H. Signal Denoising of Traffic Speed Deflectometer Measurement Based on Partial Swarm Optimization–Variational Mode Decomposition Method. Sensors. 2024; 24(12):3708. https://doi.org/10.3390/s24123708
Chicago/Turabian StyleWu, Chaoyang, Yiyuan Duan, and Hao Wang. 2024. "Signal Denoising of Traffic Speed Deflectometer Measurement Based on Partial Swarm Optimization–Variational Mode Decomposition Method" Sensors 24, no. 12: 3708. https://doi.org/10.3390/s24123708