Highly Sensitive Balloon-like Fiber Interferometer Based on Ethanol Coated for Temperature Measurement
<p>Schematic diagram of proposed structure. (<b>a</b>) Schematic diagram; (<b>b</b>) Enlarged diagram of leak point; (<b>c</b>) Overall structure diagram; (<b>d</b>) Enlarged diagram of recoupling points.</p> "> Figure 2
<p>The balloon-like structure filling with ethanol.</p> "> Figure 3
<p>Transmission spectrum of sensor with/without ethanol.</p> "> Figure 4
<p>Experimental setup. (<b>a</b>) RI measurements; (<b>b</b>) temperature measurements.</p> "> Figure 5
<p>RI measurements with 10 mm sensitive length. (<b>a</b>) Transmission spectral evolution; (<b>b</b>) linear fitting curve.</p> "> Figure 6
<p>RI measurements with 15 mm sensitive length. (<b>a</b>) Transmission spectral evolution; (<b>b</b>) linear fitting curve.</p> "> Figure 7
<p>RI measurements with 20 mm sensitive length. (<b>a</b>) Transmission spectral evolution; (<b>b</b>) linear fitting curve.</p> "> Figure 8
<p>Temperature measurements of filled ethanol solution. (<b>a</b>) Transmission spectral evolution; (<b>b</b>) linear fitting curve.</p> "> Figure 9
<p>Linear fitting curves of dip 2 shifts against temperature variation.</p> "> Figure 10
<p>Temperature measurements of filled ethanol solution. (<b>a</b>) Transmission spectral evolution; (<b>b</b>) linear fitting curve.</p> "> Figure 11
<p>Linear fitting curves of dip 2 shifts against temperature variation.</p> "> Figure 12
<p>Stability response of proposed temperature sensor.</p> ">
Abstract
:1. Introduction
2. Sensing Structure and Operating Principle
3. Sensor Fabrication Method and Experimental Setup
3.1. Balloon-like Fiber Sensor Fabrication
3.2. Experimental Setup for RI and Temperature Measurement
4. Results and Discussion
4.1. Balloon-like Fiber Sensor Fabrication
4.2. Temperature Sensitivity with Ethanol Solution
4.3. Temperature Sensitivity without Ethanol Solution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, G.; Wang, T.Q.; Zhu, L.Q.; Meng, F.Y.; Zhuang, W. A novel strain-decoupled sensitized FBG temperature sensor and its applications to aircraft thermal management. Opt. Laser Technol. 2021, 140, 106597. [Google Scholar] [CrossRef]
- Rana, S.; Kandadadai, N.; Subbaraman, H. Reflective long period grating based temperature sensor. In Proceedings of the Optical Components and Materials XVIII, San Francisco, CA, USA, 5 March 2021; p. 2576989. [Google Scholar]
- Wu, W.Y.; Gu, Z.T.; Ling, Q.; Feng, W.B. Design of a narrow-bandwidth refractive index sensor based on a cascaded few-mode long-period fiber grating. Appl. Opt. 2019, 58, 8726. [Google Scholar] [CrossRef] [PubMed]
- Anand, V.R.; Mathew, S.; Boni, S.; Radhakrishnan, P.; Kailasnath, M. Thermo-optic tuning of whispering gallery mode lasing from a dye-doped hollow polymer optical fiber. Opt. Lett. 2017, 42, 2926. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.W.; Zhao, C.L.; He, S.L.; Dong, X.Y.; Zhang, S.Q.; Zhang, Z.X.; Jin, S.Z.; Guo, J.T.; Wei, H.F. High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Opt. Lett. 2011, 36, 1548–1550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Zhang, W.G.; Zhang, Y.X.; Wang, S.; Yu, L.; Yan, Y.Y. Simultaneous measurement of curvature and temperature based on LP11 mode Bragg grating in seven-core fiber. Meas. Sci. Technol. 2017, 28, 055101. [Google Scholar] [CrossRef]
- Wang, D.Y.; Zhu, W.L.; Yi, Z.; Ma, G.L.; Gao, X.; Dai, B.; Yu, Y.; Zhou, G.R.; Wu, P.H.; Liu, C. Highly sensitive sensing of a magnetic field and temperature based on two open ring channels SPR-PCF. Opt. Express 2022, 30, 39055–39067. [Google Scholar] [CrossRef]
- Zhu, H.T.; Luo, J.X.; Dai, Q.; Zhu, S.G.; Yang, H.; Zhou, K.H.; Zhan, L.W.; Xu, B.; Chen, Y.; Lu, Y.Q.; et al. Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group. Opto-Electron. Adv. 2022, 6, 230018. [Google Scholar] [CrossRef]
- Yang, L.Y.; Li, Y.P.; Fang, F.; Li, L.Y.; Yan, Z.J.; Zhang, L.; Sun, Q.Z. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron. Adv. 2022, 5, 200076. [Google Scholar] [CrossRef]
- He, T.; Ran, Y.L.; Liu, T.; Li, H.; Fan, C.Z.; Zhou, W.; Yan, Z.J.; Liu, D.M.; Sun, Q.Z. Distributed temperature/vibration fiber optic sensor with high precision and wide bandwidth. IEEE Photonics J. 2019, 11, 7104811. [Google Scholar] [CrossRef]
- Xu, P.B.; Ba, D.X.; He, W.M.; Hu, H.P.; Dong, Y.K. Distributed Brillioun optical fiber temperature and strain sensing at a high temperature up to1000 °C by using an annealed gold-coated fiber. Opt. Express 2018, 26, 29724–29734. [Google Scholar] [CrossRef]
- Lambin, V.I.; Sebastien, L.; Raman, K. High sensitivity distributed temperature fiber sensor using stimulated Brillouin scattering. Opt. Express 2017, 25, 32591. [Google Scholar]
- Su, H.Y.; Zhang, Y.D.; Zhao, Y.P.; Ma, K.; Qi, K.Y.; Guo, Y.; Zhu, F.X. Parallel Double-FPIs Temperature Sensor Based on Suspended-Core Microstructured Optical Fiber. IEEE Photonics Technol. Lett. 2019, 31, 1905–1908. [Google Scholar] [CrossRef]
- Wei, G.Z.; Jiang, Q. A temperature-compensated force sensor based on a cascaded FPI for needle force sensing. Measurement 2022, 202, 111748. [Google Scholar] [CrossRef]
- Pan, X.P.; Sun, C.; Liu, S.R.; Wang, B.; Gao, M.M.; Guo, Q.; Chen, Q.D.; Sun, H.B.; Yu, Y.S. High-sensitivity fiber optic temperature sensor based on CTFBG-FPI and Vernier effect. Opt. Lett. 2023, 48, 3845–3848. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.Q.; Meng, H.Y.; Wang, W.; Xue, H.C.; Xiong, R.; Huang, B.; Tan, C.H.; Huang, X.G. Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating. Sens. Actuators A-Phys. 2014, 209, 73–77. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, R.J.; Zhao, K.J.; Xing, B.; Li, X.; Hu, S.; Zhao, Y. Optical fiber sensor based on SPR and MZI for seawater salinity and temperature measurement. Opt. Laser Technol. 2023, 162, 109315. [Google Scholar] [CrossRef]
- Wang, Z.H.; Jiang, S.C.; Yang, P.; Wei, W.X.; Bao, W.G.; Peng, B.J. High-sensitivity and high extinction ratio fiber strain sensor with temperature insensitivity by cascaded MZI and FPI. Opt. Express 2023, 31, 7073–7089. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Yin, B.; Li, H.S.; Wang, M.G.; Yan, R.; Li, Y.C.; Zong, C.X.; Wu, S.H. Highly sensitive sensor for simultaneous underwater measurement of salinity and temperature based on highly birefringent asymmetric photonic crystal fiber. Results Opt. 2023, 11, 100406. [Google Scholar] [CrossRef]
- Xiong, Z.Y.; Guan, C.Y.; Duan, Z.Y.; Cheng, T.L.; Ye, P.; Yang, J.; Shi, J.H.; Yang, J.; Yuan, L.B.; Grattan, K.T. All-optical vector magnetic field sensor based on a side-polished two-core fiber Michelson interferometer. Opt. Express 2022, 30, 22746–22754. [Google Scholar] [CrossRef]
- Zhou, Y.R.; Liu, X.X.; Fan, L.F.; Liu, W.Y.; Xing, E.B.; Tang, J.; Liu, J. Temperature and vibration insensitive fiber optic vector magnetic field sensor. Opt. Commun. 2023, 530, 129178. [Google Scholar] [CrossRef]
- Shao, L.Y.; Luo, Y.; Zhang, Z.Y.; Zou, X.H.; Luo, B.; Pan, W.; Yan, L.S. Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect. Opt. Commun. 2015, 336, 73–76. [Google Scholar] [CrossRef]
- Liu, Y.H.; Lin, W.H.; Hu, J.; Zhao, F.; Yu, F.H.; Liu, S.Q.; Chen, J.N.; Liu, H.H.; Shum, P.P.; Zhang, X.M. Integrated Fiber Ring Laser Temperature Sensor Based on Vernier Effect with Lyot-Sagnac Interferometer. Sensor 2023, 23, 6632. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.N.; Liu, S.; Zhang, Q.; Hong, G.Q.; Liao, C.R.; Xu, X.Z.; Liu, L.W.; Wang, Y.P. Microbubble-probe WGM resonators enable displacement measurements with high spatial resolution. Opt. Lett. 2023, 48, 1922–1925. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.N.; Zhang, Q.; Liu, S.; Liao, C.R.; Zhong, J.L.; He, J.; Wang, Y.P. High-resolution micro force sensing using a microbubble probe resonator. J. Light. Technol. 2024, 42, 1748–1753. [Google Scholar] [CrossRef]
- Liu, B.N.; Liu, S.; Hong, G.Q.; Ding, W.; Liao, C.R.; He, J.; Xu, X.Z.; Wang, Y.P. Micro displacement sensing under extreme conditions using a fiber microbubble probe. IEEE Sens. J. 2024, 24, 2507–2512. [Google Scholar] [CrossRef]
- Rajan, G.; Mathew, J.; Semenova, Y.; Farrell, G. Evaluation of the performance of a novel low-cost macro-bend fiber based temperature sensor. In Proceedings of the SPIE—The International Society for Optical Engineering, Orlando, FL, USA, 27 April 2009; p. 731610. [Google Scholar]
- Peng, X.L.; Cha, Y.P.; Zhang, H.; Li, Y.L.; Ye, J.X. Light intensity modulation temperature sensor based on U-shaped bent single-mode fiber. Optik 2017, 130, 812–817. [Google Scholar] [CrossRef]
- AI-Janabi, D.; Majid, A.; AI-Janabi, A. High-sensitivity balloon-like thermometric sensor based on bent single-mode fiber. Meas. Sci. Technol. 2020, 31, 115106. [Google Scholar] [CrossRef]
- Nam, S.H.; Yin, S.Z. High-temperature sensing using whispering gallery mode resonance in bent optical fibers. IEEE Photonics Technol. Lett. 2005, 17, 2391–2393. [Google Scholar]
- Liu, X.; Zhao, Y.; Lv, R.Q.; Wang, Q. High sensitivity balloon-like interferometer for refractive index and temperature measurement. IEEE Photonics Technol. Lett. 2016, 28, 1485–1488. [Google Scholar] [CrossRef]
- Wang, Z.X.; Liu, Y.M.; Tu, F.; Feng, S.L. Measurement of magnetic field and temperature using single bending-ring cascaded with FBG structure Mach-Zehnder interferometer. Optik 2023, 284, 107856. [Google Scholar] [CrossRef]
- João, P.S.; Jörg, B.; Jens, K.; Marta, S.F. Simultaneous measurement of displacement and temperature using a balloon-like hybrid fiber sensor. Opt. Lett. 2022, 47, 3708–3711. [Google Scholar]
- Zhao, J.; Zhao, Y.; Lv, R.Q.; Li, X.G.; Zhu, C.L.; Zhao, Q. Simultaneous Measurement of Temperature and Pressure Based on Ring-Shaped Sensing Structure with Polymer Coated No-Core Fiber. IEEE Sens. J. 2021, 21, 22783–22791. [Google Scholar] [CrossRef]
- Li, X.G.; Zhao, Y.; Zhou, X.; Cai, L. High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber. Instrum. Sci. Technol. 2018, 46, 253–264. [Google Scholar] [CrossRef]
- Ding, X.; Chen, N.; Jin, T.; Zhang, X.D.; Zhang, R.F. Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS. Opt. Laser Technol. 2023, 162, 109302. [Google Scholar] [CrossRef]
- Ding, X.; Jin, T.; Zhang, R.F. Balloon-like angle and micro-displacement sensor based on bent single-mode fiber. Opt. Fiber Technol. 2022, 68, 102787. [Google Scholar] [CrossRef]
- Wang, M.J.; Ding, X.; Zhang, R.F. Simultaneous measurement of micro-displacement and temperature based on balloon-like single-mode fiber cascaded with Sagnac interferometer. Opt. Fiber Technol. 2023, 81, 103498. [Google Scholar] [CrossRef]
- Ding, X.; Yan, J.C.; Chen, N.; Jin, T.; Zhang, R.F. Highly sensitive balloon-like fiber interferometer based on GO nanomaterial coated for humidity measurement. Opt. Laser Technol. 2023, 158, 108798. [Google Scholar] [CrossRef]
- Chen, J.; Feng, J.J.; Yan, J.C.; Yao, Q.; Zhang, D.W. Highly sensitive detection of water salinity and surface height using a double fiber grating system fabricated by femtosecond laser. Opt. Fiber Technol. 2021, 66, 102658. [Google Scholar] [CrossRef]
- Lv, R.Q.; Zhao, Y.; Wang, Q. An optical fiber temperature sensor based on an ethanol filled fabry-perot cavity. Instrum. Sci. Technol. 2014, 42, 402–411. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Lv, R.Q. A novel optical fiber temperature sensor based on fabry-perot cavity. Microw. Opt. Technol. Lett. 2013, 55, 2487–2490. [Google Scholar] [CrossRef]
- Tian, K.; Farrell, G.; Yang, W.L.; Wang, X.F.; Lewis, E.; Wang, P.F. Simultaneous measurement of displacement and temperature based on a balloon-shaped bent SMF structure incorporating an LPG. J. Light. Technol. 2018, 36, 4960–4966. [Google Scholar] [CrossRef]
Concentration | 10% | 14% | 18% | 22% | 26% |
RI | 1.3471 | 1.3530 | 1.3585 | 1.3637 | 1.3692 |
Refs | Fiber Structure | Sensitivity | Resolution (°C) |
---|---|---|---|
[1] | FBG | 40.4 pm/°C | 1 |
[2] | LPG | 46 pm/°C | 0.3 |
[6] | Multicore fiber | 12 pm/°C | / |
[7] | Parallel double-FPIs | 153.8 pm/°C | 1.54 |
[16] | Core-offset fiber | 46.2 pm/°C | 0.43 |
[27] | SMF with an absorption layer | 0.012 dB/°C | less than 1 |
[28] | U-shaped fiber with double coating | 0.023 dB/°C | 0.5 |
[30] | Jacket-stripped cladding-thinned SMF | 0.212 nm/°C | / |
[31] | Balloon-like SMF | 418 pm/°C | 0.173 |
This work | Balloon-like SMF with ethanol solution | −1.145 nm/°C | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Lin, Q.; Liu, S.; Zhang, L.; Chen, N.; Zhang, Y.; Wang, Y. Highly Sensitive Balloon-like Fiber Interferometer Based on Ethanol Coated for Temperature Measurement. Sensors 2024, 24, 3684. https://doi.org/10.3390/s24113684
Ding X, Lin Q, Liu S, Zhang L, Chen N, Zhang Y, Wang Y. Highly Sensitive Balloon-like Fiber Interferometer Based on Ethanol Coated for Temperature Measurement. Sensors. 2024; 24(11):3684. https://doi.org/10.3390/s24113684
Chicago/Turabian StyleDing, Xin, Qiao Lin, Shen Liu, Lianzhen Zhang, Nan Chen, Yuping Zhang, and Yiping Wang. 2024. "Highly Sensitive Balloon-like Fiber Interferometer Based on Ethanol Coated for Temperature Measurement" Sensors 24, no. 11: 3684. https://doi.org/10.3390/s24113684
APA StyleDing, X., Lin, Q., Liu, S., Zhang, L., Chen, N., Zhang, Y., & Wang, Y. (2024). Highly Sensitive Balloon-like Fiber Interferometer Based on Ethanol Coated for Temperature Measurement. Sensors, 24(11), 3684. https://doi.org/10.3390/s24113684