Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography
<p>The proposed approach framework. (<b>a</b>) Musculoskeletal model of lower limb. (<b>b</b>) Lower limb movement recognition model.</p> "> Figure 2
<p>Flow chart of genetic algorithm–particle swarm optimization–support vector machine (GA-PSO-SVM) algorithm for lower limb motion classification.</p> "> Figure 3
<p>sEMG preprocessing from biceps femoris (BF) muscle during walking movement. (<b>a</b>) Raw sEMG spectrum; (<b>b</b>) sEMG spectrum from 10 to 150Hz; (<b>c</b>) spectrum removing 50 Hz frequency component.</p> "> Figure 4
<p>Muscle synergy of various motions (blue and red represent healthy subjects and pathology subjects, respectively).</p> "> Figure 5
<p>Separability values for six nonlinear features.</p> "> Figure 6
<p>Recognition results of healthy and pathological subjects during three lower limb movements using different features. (<b>a</b>) Healthy subjects. (<b>b</b>) Pathology subjects.</p> ">
Abstract
:1. Introduction
- Non-negative matrix factorization (NMF) method is applied to analyze muscle synergy for multi-channel sEMG signal of various lower limb movements so as to select the most appropriate muscles.
- Taking into account the non-linearity and non-stationary of sEMG, we extract the multi-nonlinear features (e.g., approximate entropy (ApEn), SampEn, fuzzy entropy (FuzzyEn), LZC, Lyapunov, and correlation dimension (CD)). Also, the feature selection is performed with the help of the FS based on the Fisher discriminant function method, prior to feeding the dimension-reduced features to the improved SVM.
- Since the hybrid GA-PSO algorithm has both high convergence efficiency and the capability of avoiding being trapped in a local optimal solution, this approach is leveraged to optimize the SVM to find out the best parameters (i.e., penalty factor p and kernel function parameters g). Simultaneously, a GA-PSO-SVM approach is utilized to construct a lower limb motion recognition model.
- The proposed approach performance has been verified in the task of classifying three lower limb movements associated with knee muscles in healthy individuals (96.03%) and subjects afflicted with knee disorders (93.65%), respectively.
2. The Proposed Approach Framework
2.1. Selection of Muscles
2.2. Multi-Nonlinear Feature Extraction and Selection
2.2.1. Feature Extraction
2.2.2. Features Selection
2.3. Improved Hybrid GA-PSO Algorithm with SVM
2.3.1. Hybrid GA-PSO Algorithm
Algorithm 1 Pseudo-code of GA-PSO. |
|
2.3.2. Improved GA-PSO-SVM Algorithm
3. Experimental Protocol and Results Discussion
3.1. Experimental Protocol
3.2. Results Analysis and Discussion
3.2.1. Signal Preprocessing
3.2.2. Selection of Muscles
3.2.3. Feature Selection Results
3.3. Experimental Comparison Analysis
3.3.1. Time-Frequency and Nonlinear Feature
3.3.2. Different Classifier Algorithms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, B.; Guo, K.; Yu, H.Y.; Zhang, M.M. Toward gait symmetry enhancement via a cable-driven exoskeleton powered by series elastic actuators. IEEE Robot. Autom. Lett. 2022, 7, 786–793. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Z.L.; Huang, C.; Chen, L.; Guo, Q. Human-exoskeleton coupling dynamics in the swing of lower limb. Appl. Math. Model. 2022, 4, 439–454. [Google Scholar] [CrossRef]
- Chen, Z.L.; Guo, Q.; Li, T.S.; Yan, Y. Output constrained control of lower limb exoskeleton based on knee motion probabilistic model with finite-time extended state observer. IEEE-Asme Trans. Mechatron. 2023, 28, 2305–2316. [Google Scholar] [CrossRef]
- Huang, Y.J.; Chang, C.S.; Wu, Y.C.; Han, C.C.; Cheng, Y.Y.; Chen, H.M. Development of wearable devices for collecting digital rehabilitation/fitness data from lower limbs. Sensors 2024, 24, 1935. [Google Scholar] [CrossRef]
- Guo, B.J.; Li, Z.Z.; Huang, M.X.; Li, X.P.; Han, J.H. Patient’s Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots. Sensors 2024, 24, 2082. [Google Scholar] [CrossRef]
- Emilia, A.M.P.; María, F.T.G.; Andrés, R.A. Recognizing lower limb pathology thought an sEMG classification model. In Proceedings of the IEEE Ecuador Technical Chapters Meeting, Cuenca, Ecuador, 12–15 October 2021. [Google Scholar]
- Ai, Q.S.; Zhang, Y.A.; Qi, W.L.; Liu, Q.; Chen, K. Research on lower limb motion recognition based on fusion of sEMG and accelerometer signals. Symmetry 2017, 9, 147. [Google Scholar] [CrossRef]
- Espinosa, R.A.; Calderón, R. Choice of tau in the estimation of ApEn and SampEn entropy of EMG, ECG and EEG signals. In Proceedings of the Symposium on Image, Signal Processing and Artificial Vision, Bucaramanga, Colombia, 24–26 April 2019. [Google Scholar]
- Bai, Y.; Liang, Z.H.; Li, X.L. A permutation Lempel-Ziv complexity measure for EEG analysis. Biomed. Signal Process. Control 2015, 19, 102–114. [Google Scholar] [CrossRef]
- Guo, Y.N.; Naik, G.R.; Huang, S.H.; Abraham, A.; Nguyen, H.T. Nonlinear multiscale maximal Lyapunov exponent for accurate myoelectric signal class tion. Appl. Soft Comput. 2015, 36, 633–640. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.X.; Elsabbagh, A. Lower limb motion intention recognition based on sEMG fusion features. IEEE Sens. J. 2022, 22, 7005–7014. [Google Scholar] [CrossRef]
- Zhang, J.H.; Guo, J.D.; Wang, H.; Li, K.X.; Zhao, Y. Research on Lower limb Movement Pattern Recognition Method Based on ReliefF-KPCASVM. In Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 27–31 December 2021. [Google Scholar]
- Sui, X.W.; Wan, K.X.; Zhang, Y. Pattern recognition of sEMG based on wavelet packet transform and improved SVM. Int. J. Light Electron Opt. 2019, 176, 228–235. [Google Scholar] [CrossRef]
- Zeng, D.Z.; Qu, C.X.; Ma, T. Research on a gait detection system and recognition algorithm for lower limb exoskeleton robot. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 298. [Google Scholar] [CrossRef]
- Chaabane, S.B.; Kharbech, S.; Belazi, A. Improved Whale optimization Algorithm for SVM Model Selection: Application in Medical Diagnosis. In Proceedings of the International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2020. [Google Scholar]
- Liu, Q.; Liu, Y.; Zhang, C.S.; Ruan, Z.L.; Meng, W.; Cai, L.L.; Ai, Q.S. sEMG-based dynamic muscle fatigue classification using SVM with improved whale optimization algorithm. IEEE Internet Things J. 2021, 8, 16835–16844. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, W.Y.; Kan, X.; Yao, W. A Novel Adaptive Mutation PSO Optimized SVM Algorithm for sEMG-Based Gesture Recognition. Sci. Program. 2021, 2021, 9988823. [Google Scholar] [CrossRef]
- Murley, G.S.; Menz, H.B.; Landorf, K.B.; Bird, A.R. Reliability of lower limb electromyography during overground walking: A comparison of maximal- and sub-maximal normalisation techniques. J. Biomech. 2010, 43, 749–756. [Google Scholar] [CrossRef]
- Gharehbaghi, S.; Jeong, H.K.; Safaei, M.; Inan, O.T. A feasibility study on tribological origins of knee acoustic emissions. IEEE Trans. Biomed. Eng. 2022, 69, 1685–1695. [Google Scholar] [CrossRef]
- Zhong, W.J.; Fu, X.M.; Zhang, M.M. A Muscle Synergy-Driven ANFIS Approach to Predict Continuous Knee Joint Movement. IEEE Trans. Fuzzy Syst. 2022, 30, 1553–1563. [Google Scholar] [CrossRef]
- Tu, P.J.; Li, J.H.; Wang, H.J.; Cao, T.; Wang, K. Non-linear chaotic features-based human activity recognition. Electronics 2021, 10, 111. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Wang, S.R.; Tang, H.; Wang, B.; Mo, J. Analysis of fatigue in the biceps brachii by using rapid refined composite multiscale sample entropy. Biomed. Signal Process. Control 2021, 67. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71. [Google Scholar] [CrossRef] [PubMed]
- Ying, X.M.; Li, Y.X.; Li, X.C.; Bin, Y. EMG signal processing and application based on empirical mode decomposition. Math. Comput. Sci. 2019, 4, 99–103. [Google Scholar]
- Wolf, A.; Swift, B.; Swinney, L.; Vastano, A. Determining Lyapunov exponents form a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Moulin, C.; Largeron, C.; Ducottet, C.; Géry, M.; Barat, C. Fisher linear discriminant analysis for text-image combination in multimedia information retrieval. Pattern Recognit. 2014, 47, 260–269. [Google Scholar] [CrossRef]
- James, K.; Russell, E. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995. [Google Scholar]
- Shi, L.L.; Gong, J.H.; Zhai, C.J. Application of a hybrid PSO-GA optimization algorithm in determining pyrolysis kinetics of biomass. Fuel 2022, 323, 1–11. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Zhang, R.X.; Wang, Y.M.; Zhu, Z.F.; Zhang, J.X. Color difference classification based on optimization support vector machine of improved grey wolf algorithm. Int. J. Light Electron Opt. 2018, 170, 17–29. [Google Scholar] [CrossRef]
- Ghamisi, P.; Benediktsson, J.A. Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci. Remote Sens. Lett. 2015, 12, 309–313. [Google Scholar] [CrossRef]
- Sanchez, O.; Sotelo, J. EMG Dataset in Lower Limb, UCI Machine Learning Repository. 2021. Available online: http://archive.ics.uci.edu/ml/datasets/emg+dataset+in+lower+limb (accessed on 30 April 2024).
- Qin, P.J.; Shi, X. A novel method for lower limb joint angle estimation based on sEMG signal. IEEE Trans. Instrum. Meas. 2021, 70. [Google Scholar] [CrossRef]
- Tu, P.J.; Li, J.H.; Wang, H.J.; Li, Y.X.; Xiang, W. A Novel Lower-Limb Coordination Assessment Scheme Using Multi-Scale Nonlinear Coupling Characteristics with sEMG. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
Motions | Muscles | Healthy Subjects | Pathology Subjects | ||||
---|---|---|---|---|---|---|---|
Sub.1 | Sub.2 | Sub.3 | Sub.4 | Sub.5 | Sub.6 | ||
Walking | RF | 0.2504 | 0.1368 | 0.2177 | 0.0347 | 0.1213 | 0.1124 |
BF | 0.2607 | 0.1812 | 0.2314 | 0.1283 | 0.1451 | 0.1722 | |
VM | 0.9019 | 0.8201 | 0.8326 | 0.9081 | 0.8737 | 0.8102 | |
ST | 0.2223 | 0.1740 | 0.1439 | 0.1209 | 0.9383 | 0.1961 | |
Standing | RF | 0.9225 | 0.8219 | 0.8452 | 0.9305 | 0.9051 | 0.7086 |
BF | 0.1480 | 0.1500 | 0.1394 | 0.0941 | 0.0931 | 0.1871 | |
VM | 0.0939 | 0.1240 | 0.1843 | 0.1713 | 0.0875 | 0.1315 | |
ST | 0.2229 | 0.1521 | 0.1568 | 0.0974 | 0.1527 | 0.1852 | |
Sitting | RF | 0.1168 | 0.1254 | 0.2341 | 0.1531 | 0.0928 | 0.1697 |
BF | 0.8481 | 0.7526 | 0.7246 | 0.9441 | 0.9150 | 0.8875 | |
VM | 0.0909 | 0.1805 | 0.1841 | 0.1895 | 0.1880 | 0.1829 | |
ST | 0.1849 | 0.1860 | 0.1876 | 0.1876 | 0.1950 | 0.1826 |
Types | Walking | Standing | Sitting | Average | |
---|---|---|---|---|---|
HS | 88.99 | 93.38 | 91.30 | 91.23 | |
94.38 | 91.09 | 90.57 | 92.01 | ||
97.08 | 98.05 | 97.14 | 97.42 | ||
91.10 | 94.42 | 92.09 | 92.54 | ||
90.75 | 87.79 | 91.53 | 90.02 | ||
PS | 86.53 | 83.99 | 84.95 | 85.16 | |
95.13 | 95.78 | 95.25 | 95.38 | ||
92.43 | 92.20 | 90.88 | 91.79 | ||
90.92 | 91.49 | 90.01 | 90.84 | ||
87.93 | 86.80 | 87.25 | 87.32 |
GWO-SVM | WOA-SVM | PSO-SVM | GA-SVM | Ours | ||
---|---|---|---|---|---|---|
Walking | HS | 88.17 | 90.09 | 92.37 | 90.73 | 97.08 |
PS | 76.79 | 86.26 | 88.99 | 87.86 | 93.10 | |
Standing | HS | 83.50 | 83.79 | 92.75 | 82.37 | 97.14 |
PS | 80.49 | 84.64 | 91.10 | 89.78 | 94.00 | |
Sitting | HS | 83.34 | 85.46 | 94.38 | 90.78 | 98.05 |
PS | 78.45 | 81.69 | 92.43 | 91.43 | 95.20 | |
Average | 81.79 | 85.33 | 92.00 | 87.16 | 95.76 | |
Training time(s) | 17.63 | 16.96 | 16.85 | 1 6.75 | 16.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, P.; Li, J.; Wang, H. Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography. Sensors 2024, 24, 3097. https://doi.org/10.3390/s24103097
Tu P, Li J, Wang H. Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography. Sensors. 2024; 24(10):3097. https://doi.org/10.3390/s24103097
Chicago/Turabian StyleTu, Pengjia, Junhuai Li, and Huaijun Wang. 2024. "Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography" Sensors 24, no. 10: 3097. https://doi.org/10.3390/s24103097
APA StyleTu, P., Li, J., & Wang, H. (2024). Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography. Sensors, 24(10), 3097. https://doi.org/10.3390/s24103097