Research on Online Monitoring Technology and Filtration Process of Inclusions in Aluminum Melt
<p>Schematic diagram of the principle of the electrical sensing zone method, (The red arrow is the direction of molten metal flow).</p> "> Figure 2
<p>Schematic diagram of non-metallic inclusions online monitoring system.</p> "> Figure 3
<p>Experimental measuring setup.</p> "> Figure 4
<p>Schematic diagram of the signal acquisition module.</p> "> Figure 5
<p>The software interface and functional area division of the host computer.</p> "> Figure 6
<p>Signal process principle of peak detection algorithm: (<b>a</b>) principle of the peak detection algorithm in LiMCA products; (<b>b</b>) principle of the peak algorithm utilized in this work.</p> "> Figure 7
<p>Comparison of the test results of the self-developed experimental measuring device and LiMCA CM.</p> "> Figure 8
<p>Schematic diagram of the filtering process, (The black arrows in the diagram show the direction of molten metal flow). (<b>a</b>) SNIF (spinning nozzle inert flotation); (<b>b</b>) CFF (ceramic foam filter); (<b>c</b>) MCF (metallics cartridge filter).</p> "> Figure 9
<p>The average concentration distribution of inclusions of each size post-SNIF, post-CFF, and post-MCF.</p> "> Figure 10
<p>Average concentration of a set of inclusions at 10 μm after SNIF, CFF, and MCF.</p> "> Figure 11
<p>Changes in N20, N40, N60, and N80 counts after SNIF, CFF, and MCF with measurement time: (<b>a</b>) N20 data; (<b>b</b>) N40 data; (<b>c</b>) N60 data; (<b>d</b>) N80 data.</p> ">
Abstract
:1. Introduction
2. The Basic Principle of Detecting Non-Metallic Inclusions in Aluminum Liquids and Online Monitoring System
2.1. Electrical Sensing Zone Method
2.2. Non-Metallic Inclusions Online Monitoring System
3. Design and Development of Signal Processing and Feature Extraction Algorithms
3.1. Design and Optimization of Signal Acquisition Module
3.2. Optimization of Pulse Peak Detection Algorithm Based on Software Technology
4. Experiments and Analysis of Results
4.1. Analysis of the System’s Online Monitoring Function
4.2. Measurement Results and Analysis of Inclusions in Filtration Processes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sin, S.L.; Elsayed, A.; Ravindran, C. Inclusions in magnesium and its alloys: A review. Int. Mater. Rev. 2013, 58, 419–436. [Google Scholar] [CrossRef]
- Bogdanova, T.A.; Merkulova, G.A.; Gilmanshina, T.R.; Kosovich, A.A.; Lytkina, S.I.; Cheglakov, A.V.; Antonov, M.M. Comparative evaluation of methods for determination of hydrogen and non-metallic inclusions content in aluminum alloys. ARPN J. Eng. Appl. Sci. 2021, 16, 355–360. [Google Scholar]
- Kaufman, J.G.; Rooy, E.L. The influence and control of porosity and inclusions in aluminum castings. Alum. Alloy Cast. Prop. Process. Appl. 2004, 47–54. [Google Scholar] [CrossRef]
- Rajput, A.; Paul, S.K. Effect of soft and hard inclusions in tensile deformation and damage mechanism of Aluminum: A molecular dynamics study. J. Alloys Compd. 2021, 869, 159213. [Google Scholar] [CrossRef]
- Kobayashi, T. Strength and fracture of aluminum alloys. Mater. Sci. Eng. A 2000, 280, 8–16. [Google Scholar] [CrossRef]
- Gall, K.; Horstemeyer, M.F.; Degner, B.W.; McDowell, D.L.; Fan, J. On the driving force for fatigue crack formation from inclusions and voids in a cast A356 aluminum alloy. Int. J. Fract. 2001, 108, 207–233. [Google Scholar] [CrossRef]
- Zerbst, U.; Madia, M.; Klinger, C.; Bettge, D.; Murakami, Y. Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions. Eng. Fail. Anal. 2019, 98, 228–239. [Google Scholar] [CrossRef]
- Karim, M.R.; Kadau, K.; Narasimhachary, S.; Radaelli, F.; Amann, C.; Dayal, K.; Silling, S.; Germann, T.C. Crack nucleation from non-metallic inclusions in aluminum alloys described by peridynamics simulations. Int. J. Fatigue 2021, 153, 106475. [Google Scholar] [CrossRef]
- McCullough, R.; Jordon, J.; Allison, P.; Rushing, T.; Garcia, L. Fatigue crack nucleation and small crack growth in an extruded 6061 aluminum alloy. Int. J. Fatigue 2019, 119, 52–61. [Google Scholar] [CrossRef]
- Xu, Z.; Zeng, J.; Huang, W.; Pang, X. Effect of Inclusions on Microstructure and Properties of Pure Aluminum. Foundry Technol. 2009, 30, 1286–1289. [Google Scholar]
- Spriestersbach, D.; Grad, P.; Kerscher, E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. Int. J. Fatigue 2014, 64, 114–120. [Google Scholar] [CrossRef]
- Fritzsch, R.; Kennedy, M.W.; Bakken, J.A.; Aune, R.E. Electromagnetic Priming of Ceramic Foam Filters (CFF) for Liquid Aluminum Filtration. Light Met. 2016, 2013, 973–979. [Google Scholar]
- Chesonis, D.C.; DeYoung, D.H.; Elder, E.; Wood, R.O. Metal quality comparison of alcan compact degasser and SNIF at Alcoa mount holly casthouse. Light Met. 2000, 745–750. [Google Scholar]
- Liu, G.; Ren, Y.; Ma, W.; Morita, K.; Lei, Y.; Zhan, S.; Lv, G.; Li, S.; Wang, Z.; Li, R. Recent advances and future trend of aluminum alloy melt purification: A review. J. Mater. Res. Technol. 2024, 28, 4647–4662. [Google Scholar] [CrossRef]
- Voigt, C.; Dietrich, B.; Badowski, M.; Gorshunova, M.; Wolf, G.; Aneziris, C.G. Impact of the filter roughness on the filtration efficiency for aluminum melt filtration. In Light Metals; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 1063–1069. [Google Scholar]
- Schoß, J.P.; Baumann, B.; Keßler, A.; Szucki, M.; Wolf, G. Filtration Efficiency in the Recycling Process of Particle-Reinforced Aluminum Alloys Using Different Filter Materials. Int. J. Met. 2023, 17, 1681–1696. [Google Scholar] [CrossRef]
- Damoah LN, W.; Zhang, L. Removal of inclusions from aluminum through filtration. Metall. Mater. Trans. B 2010, 41, 886–907. [Google Scholar] [CrossRef]
- Voigt, C.; Jäckel, E.; Taina, F.; Zienert, T.; Salomon, A.; Wolf, G.; Aneziris, C.G.; Le Brun, P. Filtration efficiency of functionalized ceramic foam filters for aluminum melt filtration. Metall. Mater. Trans. B 2017, 48, 497–505. [Google Scholar] [CrossRef]
- Zedel, H.; Fritzsch, R.; Akhtar, S.; Aune, R.E. Automated Metal Cleanliness Analyzer (AMCA)—An Alternative Assessment of Metal Cleanliness in Aluminum Melts. In Light Metals 2021: 50th Anniversary Edition; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 778–784. [Google Scholar]
- Badowski, M.; Schmoll, R. A Comparison of Cold and Hot PoDFA Procedure for Particle Monitoring in Liquid Aluminium. Light Met. 2016, 2016, 837–842. [Google Scholar]
- Fergus, J.W. Sensors for monitoring the quality of molten aluminum during casting. J. Mater. Eng. Perform. 2005, 14, 267–275. [Google Scholar] [CrossRef]
- Guthrie, R.; Isac, M. In-situ sensors for liquid metal quality. High Temp. Mater. Process. 2012, 31, 633–643. [Google Scholar] [CrossRef]
- Hudson, S.W.; Apelian, D. Inclusion detection in molten aluminum: Current art and new avenues for in situ analysis. Int. J. Met. Cast. 2016, 10, 289–305. [Google Scholar] [CrossRef]
- Robinson, J.P. Wallace H. Coulter: Decades of invention and discovery. Cytom. Part A 2013, 83, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Doutre, D. The Development and Application of a Rapid Method of Evaluating Molten Metal Cleanliness. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1984. [Google Scholar]
- Di Silvestro, G.D.; Tiwari, R.; Isac, M.M.; Guthrie, R.I.L. Development of LiMCA (Liquid Metal Cleanliness Analyzer) Since Its Invention to Date. In Proceedings of the Conference of Metallurgists, Montréal, QC, Canada, 21–24 August 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 451–462. [Google Scholar]
- Buijs, T.L.; Gagnon, D.; Dupuis, C. Improvements in LiMCA technology: Introducing the LiMCA III. Light Met. 2016, 2015, 973–978. [Google Scholar]
- Shi, X. Upgrading Liquid Metal Cleanliness Analyzer (LiMCA) with Digital Signal Processing (DSP) Technology. Master’s Thesis, McGill University, Montreal, QC, Canada, 1994. [Google Scholar]
Algorithm | Number of False Detections | Number of Missed Detections | False Detection Rate% | Miss Detection Rate% | Running Time/ms | Number of Peaks |
---|---|---|---|---|---|---|
A | 5 | 3 | 2.60 | 1.56 | 96 | 192 |
B | 4 | 3 | 2.08 | 1.56 | 374 |
Measure Position | N20 /k/kg | N30 /k/kg | N40 /k/kg | N50 /k/kg | N60 /k/kg | N70 /k/kg | N80 /k/kg |
---|---|---|---|---|---|---|---|
Post-SNIF | 23.22 | 20.97 | 17.87 | 13.68 | 9.06 | 5.11 | 2.52 |
Post-CFF | 6.75 | 6.03 | 4.89 | 3.2 | 1.42 | 0.38 | 0.09 |
Post-MCF | 4.9 | 4.15 | 3.14 | 1.93 | 0.91 | 0.3 | 0.07 |
Inclusion Size/(μm) | Post-SNIF Concentration of Inclusions/(k/kg) | Post-CFF Concentration of Inclusions/(k/kg) | Post-MCF Concentration of Inclusions/(k/kg) | CFF Filter Efficiency/% | CFF + MCF Filter Efficiency/% |
---|---|---|---|---|---|
20–29 | 2.25 | 0.72 | 0.75 | 68.00 | 66.66 |
30–39 | 3.10 | 1.14 | 1.01 | 63.23 | 67.41 |
40–49 | 4.19 | 1.69 | 1.21 | 59.67 | 71.12 |
50–59 | 4.62 | 1.78 | 1.02 | 61.47 | 77.92 |
60–69 | 3.95 | 1.04 | 0.61 | 73.67 | 85.55 |
70–79 | 2.59 | 0.29 | 0.23 | 88.80 | 91.11 |
80–89 | 1.37 | 0.05 | 0.06 | 96.35 | 95.62 |
Over 90 | 1.15 | 0.04 | 0.01 | 96.52 | 99.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Yan, H.; Wang, J.; Zheng, J.; Na, X.; Wang, X. Research on Online Monitoring Technology and Filtration Process of Inclusions in Aluminum Melt. Sensors 2024, 24, 2757. https://doi.org/10.3390/s24092757
Wu Y, Yan H, Wang J, Zheng J, Na X, Wang X. Research on Online Monitoring Technology and Filtration Process of Inclusions in Aluminum Melt. Sensors. 2024; 24(9):2757. https://doi.org/10.3390/s24092757
Chicago/Turabian StyleWu, Yunfei, Hao Yan, Jiahao Wang, Jincan Zheng, Xianzhao Na, and Xiaodong Wang. 2024. "Research on Online Monitoring Technology and Filtration Process of Inclusions in Aluminum Melt" Sensors 24, no. 9: 2757. https://doi.org/10.3390/s24092757
APA StyleWu, Y., Yan, H., Wang, J., Zheng, J., Na, X., & Wang, X. (2024). Research on Online Monitoring Technology and Filtration Process of Inclusions in Aluminum Melt. Sensors, 24(9), 2757. https://doi.org/10.3390/s24092757