Optimizing Driving Parameters of the Jumbo Drill Efficiently with XGBoost-DRWIACO Framework: Applied to Increase the Feed Speed
<p>The complex working conditions of the jumbo drill: (<b>a</b>) a jumbo drill works in the complex formation; (<b>b</b>) a jumbo drill is washed away by more than 100 m due to mud and water in the rush.</p> "> Figure 2
<p>The research motivation of driving parameter optimization.</p> "> Figure 3
<p>3 situations that lower the efficiency of ACO: (<b>a</b>) the ant reaches the local highest point and falls into the local optimum; (<b>b</b>) the ant converges slowly in dimension <math display="inline"><semantics> <mi>Y</mi> </semantics></math>; (<b>c</b>) the ant converges with a slight fluctuation in dimension <math display="inline"><semantics> <mi>Y</mi> </semantics></math>.</p> "> Figure 4
<p>The improvement of ant colony optimization based on dimension reduction using an iterating strategy.</p> "> Figure 5
<p>The reliability of the predicted value of the optimized parameters is judged using <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi>X</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>The construction process of <math display="inline"><semantics> <mrow> <msubsup> <mi>E</mi> <mi>X</mi> <mi>j</mi> </msubsup> </mrow> </semantics></math>.</p> "> Figure 7
<p>The layout of the pressure sensors and flow sensors.</p> "> Figure 8
<p>The fitting results of the prediction models based on 4 regression algorithms on the test set: (<b>a</b>) multiple linear regression model, (<b>b</b>) BPNN regression model, (<b>c</b>) random forest regression model, and (<b>d</b>) XGBoost model.</p> "> Figure 9
<p>The reference value of iterative times <span class="html-italic">N</span> corresponding to the number of optimized parameters.</p> "> Figure 10
<p>The convergence performance of DRWIACO and ACO on the Auto MPG dataset: (<b>a</b>) DRWIACO in the 100th iteration; (<b>b</b>) DRWIACO in the 200th iteration; (<b>c</b>) ACO in the 100th iteration; (<b>d</b>) ACO in the 200th iteration.</p> "> Figure 11
<p>Drilling time of actual drilling process and optimized drilling process.</p> "> Figure A1
<p>The reference value range of the thresholds for DRWIACO.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Motivation
2.2. Prediction Model for Feed Speed Based on XGBoost
2.3. An Improved Ant Colony Optimization Algorithm with High Efficiency
2.3.1. Ant Colony Optimization Algorithm and the Defects in Efficiency
2.3.2. Dimension Reduction While Iterating Strategy to Resolve Inefficient Iterations
2.3.3. Evaluation Indicators of the Optimization Performance
3. Experiment Results and Discussion
3.1. Data Preparation
3.2. Performance Validation of the Feed Speed Prediction Model
3.2.1. Comparison with Other Machine Learning Algorithms
3.2.2. Comparison with the Model-Driven Methods
3.3. Verification of the Efficiency Improvement of DRWIACO
3.3.1. Test Method
3.3.2. The Reference Value Range of the Thresholds for DRWIACO
3.3.3. Results and Analysis
3.4. Performance Verification of the XGBoost-DRWIACO Framework
3.4.1. Test Method
3.4.2. Model Comparisons
3.5. Analysis of the Economic Benefits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Constraint | Bound | Impact Pressure | Feed Pressure | Rotational Pressure | Water Pressure | Water Flow |
---|---|---|---|---|---|---|
1 | 90 | 40 | 45 | 20 | 55 | |
145 | 120 | 120 | 30 | 100 | ||
2 | 80 | 30 | 35 | 20 | 55 | |
150 | 120 | 120 | 30 | 90 | ||
3 | 120 | 45 | 50 | 20 | 55 | |
160 | 120 | 130 | 30 | 100 | ||
4 | 100 | 30 | 35 | 20 | 55 | |
120 | 115 | 125 | 30 | 95 | ||
5 | 80 | 20 | 30 | 20 | 55 | |
120 | 60 | 125 | 30 | 100 |
Constraint | Algorithm | Optimal Solution | |||||
---|---|---|---|---|---|---|---|
Mean | Variance | Mean | Mean | ||||
1 | ACO | 4.70 | 4.91 | 0.565 | 0.275 | 5.228 | 6.17 |
DRWIACO | 4.93 | 0.604 | 0.286 | 5.914 | 4.23 | ||
GA | 4.86 | 0.516 | 0.257 | 4.501 | 12.74 | ||
PSO | 3.86 | 1.467 | 0.504 | 16.247 | 5.24 | ||
ICA | 5.46 | 1.751 | 0.600 | 18.014 | 10.87 | ||
2 | ACO | 3.91 | 4.09 | 0.485 | 0.260 | 4.904 | 7.54 |
DRWIACO | 3.69 | 0.514 | 0.272 | 5.467 | 4.65 | ||
GA | 3.75 | 0.443 | 0.254 | 4.252 | 13.86 | ||
PSO | 4.54 | 1.497 | 0.543 | 14.822 | 5.97 | ||
ICA | 4.65 | 1.856 | 0.514 | 14.554 | 9.67 | ||
3 | ACO | 5.18 | 4.96 | 0.651 | 0.311 | 5.854 | 7.56 |
DRWIACO | 4.90 | 0.714 | 0.321 | 6.007 | 5.01 | ||
GA | 5.00 | 0.627 | 0.307 | 5.252 | 13.17 | ||
PSO | 5.90 | 1.652 | 0.716 | 19.271 | 5.78 | ||
ICA | 4.53 | 1.574 | 0.722 | 18.523 | 11.71 | ||
4 | ACO | 3.14 | 3.24 | 0.394 | 0.154 | 4.574 | 6.45 |
DRWIACO | 3.10 | 0.416 | 0.161 | 3.613 | 4.21 | ||
GA | 3.04 | 0.347 | 0.124 | 4.274 | 11.97 | ||
PSO | 2.51 | 1.271 | 0.527 | 12.071 | 5.71 | ||
ICA | 2.44 | 1.514 | 0.714 | 10.674 | 9.64 | ||
5 | ACO | 2.62 | 2.75 | 0.341 | 0.124 | 3.348 | 5.97 |
DRWIACO | 2.76 | 0.382 | 0.158 | 4.562 | 3.94 | ||
GA | 2.51 | 0.310 | 0.117 | 3.107 | 9.37 | ||
PSO | 3.02 | 1.047 | 0.514 | 10.952 | 4.64 | ||
ICA | 3.06 | 1.134 | 0.526 | 12.004 | 8.64 |
References
- Sethu, T.A.; Letsebe, T.P.; Magwaza, L.; Rupprecht, S.M. Introduction of drill and blast utilizing pneumatic rock-drills in a Rwandan artisanal underground mine. J. South. Afr. Inst. Min. Metall. 2017, 117, 313–319. [Google Scholar] [CrossRef]
- Junbo, F.; Hongzhen, L.; Jinying, Z. Development and Prospect of Blasting Construction Technology for Mountain Tunnel. Tunn. Constr. 2021, 41, 1980–1991. [Google Scholar]
- Adebayo, B.; Mukoya, J.G.M. Rock properties and machine parameters evaluation at Rossing Uranium Mine for optimum drill performance. J. South. Afr. Inst. Min. Metall. 2019, 119, 459–464. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, S.; Tong, J.; Wang, Z.; Yao, M.; Li, J.; Yi, W. Intelligent classification model of surrounding rock of tunnel using drilling and blasting method. Undergr. Space 2021, 6, 539–550. [Google Scholar] [CrossRef]
- Navarro, J.; Sanchidrian, J.A.; Segarra, P.; Castedo, R.; Paredes, C.; Lopez, L.M. On the mutual relations of drill monitoring variables and the drill control system in tunneling operations. Tunn. Undergr. Sp. Tech. 2018, 72, 294–304. [Google Scholar] [CrossRef]
- Omosede, E.P.; DeMing, Y. Theoretical and Practical Risk Assessment Method in Tunneling. Adv. Mater. Res. 2011, 255–260, 3953–3957. [Google Scholar]
- Jin, B.; Liu, Y.; Yang, C.; Tan, Z.; Zhang, J. Construction Technique of Long-Span Shallow-Buried Tunnel Considering the Optimal Sequence of Pilot-Tunnel Excavation. Adv. Mater. Sci. Eng. 2015, 2015, 491689. [Google Scholar] [CrossRef]
- Hae-Mahn, K.; Lee, I.M.; Hong, C. Effect of RMR and rock type on tunnel drilling speed. J. Korean Tunn. Undergr. Space Assoc. 2019, 21, 561–571. [Google Scholar]
- Ganesan, G.; Mishra, A.K. Assessment of drilling inaccuracy and delineation of constructional and geological overbreak. Tunn. Undergr. Sp. Tech. 2021, 108, 103730. [Google Scholar] [CrossRef]
- Rao, K.K.; Choudhary, B.S.; Ghade, A.; Chandrahas. Critical analysis of process cycle by numerical modelling for faster development of drives in hard-rock underground mine—A case study. Curr. Sci. India 2020, 118, 1547–1556. [Google Scholar] [CrossRef]
- Do, N.A.; Dias, D. A comparison of 2D and 3D numerical simulations of tunnelling in soft soils. Environ. Earth Sci. 2017, 76, 102. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, H.; Chen, R.; Chan, T.H.T. Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: A comparative study. Tunn. Undergr. Sp. Tech. 2020, 99, 103383. [Google Scholar] [CrossRef]
- Mikaeil, R.; Haghshenas, S.; Sedaghati, Z. Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: The second part of Emamzade Hashem tunnel). Nat. Hazards 2019, 97, 1099–1113. [Google Scholar] [CrossRef]
- Afradi, A.; Ebrahimabadi, A.; Hallajian, T. Prediction of TBM Penetration Rate Using Fuzzy Logic, Particle Swarm Optimization and Harmony Search Algorithm. Geotech. Geol. Eng. 2022, 40, 1513–1536. [Google Scholar] [CrossRef]
- Ozturk, H.T.; Turkeli, E.; Durmus, A. Optimum design of RC shallow tunnels in earthquake zones using artificial bee colony and genetic algorithms. Comput. Concr. 2016, 17, 435–453. [Google Scholar] [CrossRef]
- Xue, Q.; Nie, W.; Guo, L.; Liu, Q.; Hua, Y.; Sun, N.; Liu, C.; Niu, W. Determining the optimal airflow rate to minimize air pollution in tunnels. Process Saf. Environ. 2022, 157, 115–130. [Google Scholar] [CrossRef]
- Weiliang, L. Discussion on Influencing Factors of Drilling Speed in Rotary Drilling. Coal Mine Mach. 2020, 41, 2. [Google Scholar]
- Cao, R.; Wang, Y.; Zhao, Y.; Wang, X.; He, S.; Peng, L. In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index. Chin. J. Geotech. Eng. 2021, 43, 9. [Google Scholar]
- Zhou, F.; Zhou, P.; Li, J.; Lin, J.; Ge, T.; Deng, S.; Ren, R.; Wang, Z. Deformation characteristics and failure evolution process of the existing metro station under unilateral deep excavation. Eng. Fail. Anal. 2022, 131, 105870. [Google Scholar] [CrossRef]
- Guo, D.; Li, J.; Jiang, S.; Li, X.; Chen, Z. Intelligent assistant driving method for tunnel boring machine based on big data. Acta Geotech. 2022, 17, 1019–1030. [Google Scholar] [CrossRef]
- Kim, D.; Pham, K.; Oh, J.; Lee, S.; Choi, H. Classification of surface settlement levels induced by TBM driving in urban areas using random forest with data-driven feature selection. Autom. Constr. 2022, 135, 104109. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Zhao, Y.; Xu, H. Tunneling parameters optimization based on multi-objective differential evolution algorithm. Soft Comput. 2021, 25, 3637–3656. [Google Scholar] [CrossRef]
- Kim, K.; Jung, Y.; Shin, Y.; Shin, J. Optimizing the drainage system of subsea tunnels using the PSO algorithm. Mar. Georesour Geotec. 2024, 42, 266–278. [Google Scholar] [CrossRef]
- Guizzo, G.; Vergilio, S.R.; Pozo, A.T.R.; Fritsche, G.M. A multi-objective and evolutionary hyper-heuristic applied to the Integration and Test Order Problem. Appl. Soft Comput. 2017, 56, 331–344. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Khalef, R.; Ali, G.G.; El-adaway, I.H. Evaluating Deterioration of Tunnels Using Computational Machine Learning Algorithms. J. Constr. Eng. M. 2021, 147, 04021125. [Google Scholar] [CrossRef]
- Ding, Z.; Nguyen, H.; Bui, X.; Zhou, J.; Moayedi, H. Computational Intelligence Model for Estimating Intensity of Blast-Induced Ground Vibration in a Mine Based on Imperialist Competitive and Extreme Gradient Boosting Algorithms. Nat. Resour. Res. 2020, 29, 751–769. [Google Scholar] [CrossRef]
- Lim, S.; Chi, S. Xgboost application on bridge management systems for proactive damage estimation. Adv. Eng. Inf. 2019, 41. [Google Scholar] [CrossRef]
- Yan, H.; He, Z.; Gao, C.; Xie, M.; Sheng, H.; Chen, H. Investment estimation of prefabricated concrete buildings based on XGBoost machine learning algorithm. Adv. Eng. Inform. 2022, 54, 100922. [Google Scholar] [CrossRef]
- Degtyarev, V.V.; Naser, M.Z. Boosting machines for predicting shear strength of CFS channels with staggered web perforations. Structures 2021, 34, 3391–3403. [Google Scholar] [CrossRef]
- Gomez, O.; Baran, B. Arguments for ACO’s success. In Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 26–30 June 2004; Volume 3102, pp. 259–260. [Google Scholar]
- Huang, S.; Huang, Y.; Blazquez, C.A.; Chen, C. Solving the vehicle routing problem with drone for delivery services using an ant colony optimization algorithm. Adv. Eng. Inform. 2022, 51, 101536. [Google Scholar] [CrossRef]
- Tianrui, Z.; Baoku, W.; Fuqiang, Z. Research on improved ant colony algorithm for robot global path planning. Comput. Eng. Appl. 2021, 58, 282–291. [Google Scholar]
- Wang, Y.; Han, Z. Ant colony optimization for traveling salesman problem based on parameters optimization. Appl. Soft Comput. 2021, 107, 107439. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Jin, M.; Ma, D.; Xu, R. Economy Research on Mechanized Construction of Tunnel with Dual-arm Jumbo. Equip. Manag. Maint. 2015, 32, 5. [Google Scholar]
Threshold | Tendency | The Number of Terminated Optimized Parameters | Runtime |
---|---|---|---|
Driving Parameter | Impact Pressure (bar) | Feed Pressure (bar) | Rotational Pressure (bar) | Water Pressure (bar) | Water Flow (L/min) |
---|---|---|---|---|---|
Minimum | 0 | 0 | 0 | 20 | 55 |
Maximum | 190 | 210 | 130 | 30 | 120 |
Algorithm | (s) | (s) | ||
---|---|---|---|---|
Multiple linear regression | 0.5652 | 0.786 | 2.004 | 0.0294 |
BPNN regression | 0.8034 | 0.357 | 3.976 | 0.0466 |
Random forest regression | 0.8527 | 0.261 | 2.977 | 0.0397 |
XGBoost regression | 0.8734 | 0.247 | 2.121 | 0.0311 |
Model | RMSE | (s) | |
---|---|---|---|
Model 1 | 0.5332 | 0.791 | 1.224 |
Model 2 | 0.5921 | 0.702 | 1.001 |
XGBoost Model | 0.8651 | 0.251 | 2.155 |
Hyper-Parameter | ACO | DRWIACO |
---|---|---|
Population size () | 200 | 200 |
Volatilization rate of the pheromone () | 0.3 | 0.3 |
Maximum iterations () | 200 | 200 |
Control parameter ( and ) | ; | ; |
Hyper-Parameter | ||||||
---|---|---|---|---|---|---|
Reference value range | 0.01–0.05 | 0.08–0.25 | 0.12–0.50 | 0.06–0.20 | 0.65–0.85 | 4–6 |
Dataset | Algorithm | (s) | |||||
---|---|---|---|---|---|---|---|
Mean | Variance | Mean | Variance | Mean | Variance | ||
I with 6 optimized parameters | ACO | 0.364 | 0.176 | 0.852 | 0.255 | 9.05 | 1.431 |
DRWIACO | 0.387 | 0.185 | 0.896 | 0.273 | 6.74 | 0.962 | |
II with 7 optimized parameters | ACO | 0.401 | 0.463 | 1.034 | 0.565 | 15.36 | 1.674 |
DRWIACO | 0.426 | 0.527 | 1.167 | 0.621 | 11.33 | 1.024 | |
III with 7 optimized parameters | ACO | 0.454 | 0.505 | 1.125 | 0.581 | 16.87 | 1.854 |
DRWIACO | 0.465 | 0.529 | 1.236 | 0.614 | 10.94 | 1.145 | |
IV with 8 optimized parameters | ACO | 0.491 | 0.641 | 1.297 | 0.741 | 24.71 | 2.124 |
DRWIACO | 0.522 | 0.695 | 1.311 | 0.843 | 16.45 | 1.247 | |
V with 14 optimized parameters | ACO | 0.636 | 0.855 | 1.305 | 1.024 | 50.56 | 3.211 |
DRWIACO | 0.674 | 0.964 | 1.320 | 1.127 | 31.54 | 1.545 |
Dataset | Algorithm | t (s) | |||
---|---|---|---|---|---|
Mean | Variance | Mean | Variance | ||
CEC2017-F1, Dim = 10 | ACO | 9.62 | 2.33 | 12.58 | 1.74 |
DRWIACO | 10.09 | 2.64 | 9.46 | 1.13 | |
CEC2017-F3, Dim = 30 | ACO | 15.66 | 4.02 | 33.72 | 3.79 |
DRWIACO | 16.42 | 4.66 | 23.74 | 3.01 | |
CEC2022-F3, Dim = 20 | ACO | 18.25 | 6.37 | 22.60 | 2.54 |
DRWIACO | 18.93 | 7.65 | 16.34 | 2.04 | |
CEC2022-F10, Dim = 20 | ACO | 87.32 | 15.97 | 28.78 | 3.50 |
DRWIACO | 91.59 | 18.44 | 20.41 | 2.97 |
Hyper-Parameter | ACO | DRWIACO | GA | PSO | ICA |
---|---|---|---|---|---|
Population size | 200 | 200 | 200 | 150 | 150 |
Maximum iterations | 200 | 200 | 200 | 200 | 200 |
Addition | ; ; | ; ; | Crossover rate is 0.7; Selectivity is 0.5. | Inertia weight is 0.8; Learning rate is 0.35. | \ |
Constraint | Algorithm | Optimal Solution | (s) | ||||
---|---|---|---|---|---|---|---|
Mean | Variance | Mean | Mean | ||||
DRWIACO | 4.70 | 4.91 | 0.604 | 0.286 | 5.914 | 4.23 | |
1 | PSO | 4.93 | 1.467 | 0.504 | 16.247 | 5.24 | |
ACO | 4.86 | 0.565 | 0.275 | 5.228 | 6.17 | ||
ICA | 3.84 | 1.751 | 0.600 | 18.014 | 10.87 | ||
GA | 5.46 | 0.516 | 0.257 | 4.501 | 12.74 | ||
3 | DRWIACO | 5.18 | 4.96 | 0.714 | 0.321 | 6.007 | 5.00 |
PSO | 4.90 | 1.652 | 0.716 | 19.271 | 5.78 | ||
ACO | 5.00 | 0.651 | 0.311 | 5.854 | 7.56 | ||
ICA | 5.90 | 1.574 | 0.722 | 18.523 | 11.71 | ||
GA | 4.53 | 0.627 | 0.307 | 5.252 | 13.17 |
Algorithm | Optimal Solution | (s) | ||||
---|---|---|---|---|---|---|
Mean | Variance | Mean | Mean | |||
DRWIACO | 3.91 | 4.10 | 0.520 | 0.252 | 5.52 | 3.93 |
PSO | 4.31 | 1.257 | 0.433 | 14.385 | 4.77 | |
ACO | 4.05 | 0.512 | 0.258 | 4.880 | 5.68 | |
ICA | 3.44 | 1.510 | 0.512 | 15.822 | 9.40 | |
GA | 4.20 | 0.450 | 0.242 | 4.143 | 11.00 |
Cost Item | Details | Unit Price |
---|---|---|
Labor cost () | Three operators | CNY 40 (USD 5.53, EUR 5.19) per person per hour |
Rent cost of the machine () | One jumbo drill | CNY 400 (USD 55.3, EUR 51.9) per hour |
Electricity () | Machine power is 325 KW. | CNY 1.025 (USD 0.142, EUR 0.133) per kilowatt-hour |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Lin, L.; Wu, J.; Lv, Y.; Tong, C. Optimizing Driving Parameters of the Jumbo Drill Efficiently with XGBoost-DRWIACO Framework: Applied to Increase the Feed Speed. Sensors 2024, 24, 2600. https://doi.org/10.3390/s24082600
Guo H, Lin L, Wu J, Lv Y, Tong C. Optimizing Driving Parameters of the Jumbo Drill Efficiently with XGBoost-DRWIACO Framework: Applied to Increase the Feed Speed. Sensors. 2024; 24(8):2600. https://doi.org/10.3390/s24082600
Chicago/Turabian StyleGuo, Hao, Lin Lin, Jinlei Wu, Yancheng Lv, and Changsheng Tong. 2024. "Optimizing Driving Parameters of the Jumbo Drill Efficiently with XGBoost-DRWIACO Framework: Applied to Increase the Feed Speed" Sensors 24, no. 8: 2600. https://doi.org/10.3390/s24082600