A Geomagnetic/Odometry Integrated Localization Method for Differential Robot Using Real-Time Sequential Particle Filter
<p>The framework of the proposed method.</p> "> Figure 2
<p>Sequential geomagnetic particle filter.</p> "> Figure 3
<p>Real-time sequential particle filter based on FIFO.</p> "> Figure 4
<p>Comparison between real trajectory and odometry trajectory.</p> "> Figure 5
<p>Rigid transformation result.</p> "> Figure 6
<p>The motion of differential robots.</p> "> Figure 7
<p>The influence of different odometry calibration parameters. (<b>a</b>) Trajectories generated by different values of <math display="inline"><semantics> <mi>d</mi> </semantics></math>. (<b>b</b>) Trajectories generated by different values of <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>L</mi> </msub> </mrow> </semantics></math>. (<b>c</b>) Trajectories generated by different values of <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>R</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 8
<p>Trajectory shape correction.</p> "> Figure 9
<p>Matching result correction.</p> "> Figure 10
<p>The flowchart of the RSPF-based localization method.</p> "> Figure 11
<p>Robot motion simulation.</p> "> Figure 12
<p>Simulated geomagnetic reference maps. (<b>a</b>) Reference map of the <math display="inline"><semantics> <mi>X</mi> </semantics></math> component. (<b>b</b>) Reference map of the <math display="inline"><semantics> <mi>Z</mi> </semantics></math> component. (<b>c</b>) Reference map of the scalar.</p> "> Figure 13
<p>Average RMSE under different trajectory shapes.</p> "> Figure 14
<p>Simulation results under different noises.</p> "> Figure 15
<p>Average simulation time.</p> "> Figure 16
<p>Comparison of trajectories and positioning errors of different simulations.</p> "> Figure 16 Cont.
<p>Comparison of trajectories and positioning errors of different simulations.</p> "> Figure 17
<p>Experimental equipment.</p> "> Figure 18
<p>Geomagnetic reference maps. (<b>a</b>) Reference map of the <math display="inline"><semantics> <mi>X</mi> </semantics></math> component. (<b>b</b>) Reference map of the <math display="inline"><semantics> <mi>Z</mi> </semantics></math> component. (<b>c</b>) Reference map of the scalar.</p> "> Figure 19
<p>Trajectories and positioning errors of experimental results.</p> ">
Abstract
:1. Introduction
- (1)
- Considering the additional errors caused by the influence of noise when the single-point geomagnetic particle filter algorithm operates continuously, we perform real-time sequential particle filtering by modifying the particles from single-point to first-in-first-out (FIFO) sequence using the data sequence from a segment of the trajectory. The particle weights are calculated using the data from the entire sequence, reducing the impact of measurement noise from individual points.
- (2)
- To minimize the positioning error caused by sequence matching based on rigid transformation when there is a substantial difference between the actual trajectory and the odometry trajectory, we incorporate the odometry calibration parameters of a differential robot into particles. The shape of the odometry trajectory is adjusted in real time, making it closer to the real trajectory.
- (3)
- To further improve the positioning accuracy, secondary matching of the matching results through the MAGCOM algorithm is performed to reduce the positioning errors of the sequential particle filter.
2. Proposed Method
2.1. RSPF
2.2. Trajectory Shape Correction Using Odometry Calibration Parameters
2.3. Matching Result Correction Using MAGCOM
2.4. Method Steps
- (1)
- If a stop command is received, navigation is considered finished. Otherwise, step two is performed.
- (2)
- Obtain new geomagnetic and odometry data, combine them into one data point, and add the data point to data sequence . If the length of reaches , set , , and perform the third step. Otherwise, repeat the second step.
- (3)
- If , perform the third step. Otherwise, the sixth step is performed.
- (4)
- Initialize particle and calculate trajectory .
- (5)
- Calculate particle weight and set . Then, go back to the third step.
- (6)
- Normalize the particle weights and perform resampling. Then, calculate the particle filter result .
- (7)
- Calculate result trajectory based on . Save the endpoint of as the preliminary matching result in result sequence . Then, set , .
- (8)
- If , perform the 10th step. Otherwise, the ninth step is performed.
- (9)
- The last points are combined into a sequence and used to perform MAGCOM matching. Then, replace with .
- (10)
- Add offset to all positions in . Then, set .
- (11)
- Remove the starting point of . Set . Go back to the first step.
3. Simulation
3.1. Simulation Setup
3.1.1. Simulation Platform
3.1.2. Simulation Environment Construction
3.1.3. Reference Methods
3.1.4. Evaluation Metrics
3.2. Feasibility Evaluation
3.2.1. Robustness Evaluation
3.2.2. Efficiency Evaluation
3.3. Performance Evaluation
3.3.1. Positioning Accuracy Evaluation
3.3.2. Execution Efficiency Evaluation
4. Experiments
4.1. Experiment Environment
4.2. Experimental Results and Performance Evaluation
4.2.1. Experimental Results
4.2.2. Positioning Accuracy Evaluation
4.2.3. Efficiency Evaluation
4.3. Discussion
- (1)
- Discussion of Generality:
- (2)
- Discussion of Efficiency:
- (3)
- Discussion of Robustness:
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
GMN | Geomagnetic Matching Navigation |
INS | Inertial Navigation System |
RSPF | Real-Time Sequential Particle Filter |
MAGCOM | Magnetic Contour Matching |
ICCP | Iterative Closest Contours Point |
SIMAN | Sandia Inertial Magnetic Aided Navigation |
PSO | Particle Swarm Optimization |
FIFO | First-In-First-Out |
MSD | Mean Square Difference |
AFPF | Adaptive Fission Particle Filter |
RMSE | Root Mean Square Error |
References
- Zhuang, Y.H.; Yuan, C.Z.; Lin, C.Y.; Peconkova, V.; Lee, M.F.R. Calibration for kinematic control of differential-drive mobile robots: A machine learning approach. In Proceedings of the 2023 International Conference on Advanced Robotics and Intelligent Systems, Taipei, Taiwan, 30 August–1 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, G.; Cai, Q.; Chen, T. A novel bluetooth-odometer-aided smartphone-based vehicular navigation in satellite-denied environments. IEEE Trans. Ind. Electron. 2023, 70, 3136–3146. [Google Scholar] [CrossRef]
- Ouyang, W.; Wu, Y.; Chen, H. INS/odometer land navigation by accurate measurement modeling and multiple-model adaptive estimation. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 245–262. [Google Scholar] [CrossRef]
- Sousa, R.B.; Petry, M.R.; Moreira, A.P. Evolution of odometry calibration methods for ground mobile robots. In Proceedings of the 2020 IEEE International Conference on Autonomous Robot Systems and Competitions, Ponta Delgada, Portugal, 15–17 April 2020; pp. 294–299. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, K.; Zhang, Q.; Liu, Z.; Chen, D.; Pan, M.; Hu, J. Geomagnetic vector pattern recognition navigation method based on probabilistic neural network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–8. [Google Scholar] [CrossRef]
- Hong, L.; Mingyong, L.; Kun, L. Bio-inspired geomagnetic navigation method for autonomous underwater vehicle. J. Syst. Eng. Electron. 2017, 28, 1203–1209. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Zhang, Q.; Chen, D.; Pan, M.; Xu, Y. A new geomagnetic vector navigation method based on a two-stage neural network. Electronics 2023, 12, 1975. [Google Scholar] [CrossRef]
- Dong, J.; Ren, X.; Han, S.; Luo, S. UAV vision aided INS/odometer integration for land vehicle autonomous navigation. IEEE Trans. Veh. Technol. 2022, 71, 4825–4840. [Google Scholar] [CrossRef]
- Hu, Z.D.; Guo, C.F.; Zhang, S.F.; Cai, H. Application of unscented kalman filter in geomagnetic navigation for aerodynamic missile. J. Astronaut. 2009, 30, 1443–1448. [Google Scholar] [CrossRef]
- Huang, C.Y.; Tian, H.D.; Zhao, H. Present research situation of geomagnetic filter navigation technologies. Sci. Technol. Eng. 2013, 13, 8976–8982. [Google Scholar] [CrossRef]
- Zhiguo, D.; Chong, K. Geomagnetic field aided inertial navigation using the SITAN algorithm. In Proceedings of the 2014 2nd International Conference on Systems and Informatics, Shanghai, China, 15–17 November 2014; pp. 79–83. [Google Scholar] [CrossRef]
- Li, M.M.; Lu, H.Q.; Yin, H.; Huang, X.L. Novel algorithm for geomagnetic navigation. J. Cent. S. Univ. Technol. 2011, 18, 791–799. [Google Scholar] [CrossRef]
- Solin, A.; Sarkka, S.; Kannala, J.; Rahtu, E. Terrain navigation in the magnetic landscape: Particle filtering for indoor positioning. In Proceedings of the 2016 European Navigation Conference, Helsinki, Finland, 30 May–2 June 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Quintas, J.; Teixeira, F.C.; Pascoal, A. AUV geophysical navigation using magnetic data—The MEDUSA GN system. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium Journal, Monterey, CA, USA, 23–26 April 2018; pp. 1122–1130. [Google Scholar] [CrossRef]
- Quintas, J.; Cruz, J.; Pascoal, A.; Teixeira, F.C. A comparison of nonlinear filters for underwater geomagnetic navigation. In Proceedings of the 2020 IEEE/OES Autonomous Underwater Vehicles Symposium, St. Johns, NL, Canada, 30 September–2 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Shi, L.; Yu, M.; Yin, W. PDR/geomagnetic fusion localization method based on AOFA-improved particle filter. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Siebler, B.; Gerstewitz, T.; Sand, S.; Hanebeck, U.D. Magnetic field-based indoor localization of a tracked robot with simultaneous calibration. In Proceedings of the 2023 13th International Conference on Indoor Positioning and Indoor Navigation, Nuremberg, Germany, 25–28 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Yang, W.; Shen, T.; Liang, D.; He, Q. Underwater geomagnetic localization based on adaptive fission particle-matching technology. J. Mar. Sci. Eng. 2023, 11, 1739. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Zhang, Q.; Chen, D.; Pan, M.; Hu, J.; Xu, Y.; Wang, Z.; Wang, Z. An improved geomagnetic navigation method based on two-component gradient weighting. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Xiao, J.; Duan, X.; Qi, X. An adaptive delta m-ICCP geomagnetic matching algorithm. J. Navig. 2018, 71, 649–663. [Google Scholar] [CrossRef]
- Liu, K.; Motta, G.P.A.; Ma, T.; Guo, T. Multi-floor indoor navigation with geomagnetic field positioning and ant colony optimization algorithm. In Proceedings of the 2016 IEEE Symposium on Service-Oriented System Engineering, Oxford, UK, 29 March–2 April 2016; pp. 314–323. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Q.; Pan, M.; Chen, D.; Wan, C.; Wu, F.; Liu, Y. A new geomagnetic matching navigation method based on multidimensional vector elements of earth’s magnetic field. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1289–1293. [Google Scholar] [CrossRef]
- Chen, K.; Liang, W.C.; Liu, M.X.; Sun, H.Y. Comparison of geomagnetic aided navigation algorithms for hypersonic vehicles. J. Zhejiang Univ.-Sci. A 2020, 21, 673–683. [Google Scholar] [CrossRef]
- Lihui, W.; Ninghui, X.; Qingya, L. A PSO geomagnetic matching algorithm based on particle constraint. J. Chin. Inert Technol. 2020, 28, 755–760. [Google Scholar] [CrossRef]
- Xu, N.; Wang, L.; Wu, T.; Yao, Z. An innovative PSO-ICCP matching algorithm for geomagnetic navigation. Measurement 2022, 193, 110958. [Google Scholar] [CrossRef]
- Zixiang, J.; Supeng, X.; Guibin, Z.; Jian, L.; Genwang, D.; Zhenyu, F. An ISCCP algorithm for geomagnetic gradient matching for navigation. Geophys. Geochem. Explor. 2022, 46, 1225–1231. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Li, M. Improved ICCP algorithm considering scale error for underwater geomagnetic aided inertial navigation. Math. Probl. Eng. 2019, 2019, 1527940. [Google Scholar] [CrossRef]
- Qiu, K.; Huang, H.; Li, W.; Luo, D. Indoor geomagnetic positioning based on a joint algorithm of particle filter and dynamic time warp. In Proceedings of the 2018 Ubiquitous Positioning 2018, Indoor Navigation and Location-Based Services, Wuhan, China, 22–23 March 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Liu, F.; Li, F.; Lin, N.; Jing, X. Gravity aided positioning based on real-time ICCP with optimized matching sequence length. IEEE Access 2019, 7, 97440–97456. [Google Scholar] [CrossRef]
- Cai, L.; Zheng, T. Gravity matching simulation of real-time ICCP algorithm. Ship Electron. Eng. 2016, 36, 109–112. [Google Scholar] [CrossRef]
Components | Specifications |
---|---|
CPU | Intel(R) i7-10870H @ 2.20GHz |
RAM | 16 GB |
Operating System | Windows 10 (64-bit) |
Simulation Software | Unity 2019.3.3f1, PyCharm Community Edition 2023.2.1 |
Shape | /mm | /mm | /mm |
---|---|---|---|
1 | 120 | 120 | 500 |
2 | 119 | 120 | 500 |
3 | 118 | 120 | 500 |
4 | 117 | 120 | 500 |
5 | 120 | 120 | 495 |
6 | 120 | 120 | 490 |
7 | 120 | 120 | 485 |
Magnetic Noise | /nT | /nT |
---|---|---|
1 | 0 | 0 |
2 | 50 | 100 |
3 | 100 | 200 |
4 | 150 | 300 |
5 | 200 | 400 |
/mm | /mm | /mm | /nT | /nT | |
---|---|---|---|---|---|
1 | 119 | 120 | 495 | 0 | 0 |
2 | 118 | 120 | 490 | 0 | 0 |
3 | 117 | 120 | 485 | 0 | 0 |
4 | 119 | 120 | 495 | 50 | 100 |
5 | 119 | 120 | 495 | 100 | 200 |
Odometer | Real-Time ICCP | PF | AFPF | RSPF | ||
---|---|---|---|---|---|---|
1 | Average /mm | 714.72 | 575.86 | 441.43 | 441.78 | 201.31 |
Average /mm | 1458.34 | 3021.55 | 976.41 | 1065.65 | 517.33 | |
Average /mm | 1061.40 | 745.30 | 807.33 | 945.76 | 250.78 | |
2 | Average /mm | 1489.94 | 1127.50 | 1275.24 | 1511.65 | 236.34 |
Average /mm | 3032.14 | 3925.28 | 2229.72 | 3957.33 | 563.16 | |
Average /mm | 2169.55 | 1825.05 | 1941.41 | 2646.74 | 266.51 | |
3 | Average /mm | 2291.13 | 1699.99 | 1641.35 | 1937.64 | 242.18 |
Average /mm | 4669.68 | 4793.87 | 4544.77 | 5063.85 | 570.73 | |
Average /mm | 3248.70 | 3394.47 | 2276.20 | 3254.32 | 324.92 | |
4 | Average /mm | 714.72 | 1218.29 | 501.73 | 413.06 | 210.40 |
Average /mm | 1458.34 | 5640.38 | 1219.81 | 1025.42 | 538.13 | |
Average /mm | 1061.40 | 523.01 | 706.00 | 255.08 | 255.08 | |
5 | Average /mm | 714.72 | 1456.84 | 636.10 | 447.93 | 210.87 |
Average /mm | 1458.34 | 5994.75 | 1734.87 | 1055.51 | 562.40 | |
Average /mm | 1061.40 | 508.84 | 1194.82 | 906.51 | 274.50 |
Real-Time ICCP | PF | AFPF | RSPF | |
---|---|---|---|---|
Average /s | 28.08 | 0.94 | 0.27 | 8.05 |
Odometer | Real-Time ICCP | PF | AFPF | RSPF | |
---|---|---|---|---|---|
Average /mm | 556.76 | 520.33 | 586.45 | 514.13 | 367.19 |
Average /mm | 1884.59 | 2197.41 | 1795.29 | 1761.01 | 1107.43 |
Average /mm | 348.90 | 251.22 | 420.87 | 318.60 | 249.28 |
/s | - | 20.77 | 0.89 | 0.24 | 8.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Yu, M.; Yan, X.; Zhou, Z.; Wang, C.; Liu, B. A Geomagnetic/Odometry Integrated Localization Method for Differential Robot Using Real-Time Sequential Particle Filter. Sensors 2024, 24, 2120. https://doi.org/10.3390/s24072120
Luo Q, Yu M, Yan X, Zhou Z, Wang C, Liu B. A Geomagnetic/Odometry Integrated Localization Method for Differential Robot Using Real-Time Sequential Particle Filter. Sensors. 2024; 24(7):2120. https://doi.org/10.3390/s24072120
Chicago/Turabian StyleLuo, Qinghua, Mutong Yu, Xiaozhen Yan, Zhiquan Zhou, Chenxu Wang, and Boyuan Liu. 2024. "A Geomagnetic/Odometry Integrated Localization Method for Differential Robot Using Real-Time Sequential Particle Filter" Sensors 24, no. 7: 2120. https://doi.org/10.3390/s24072120
APA StyleLuo, Q., Yu, M., Yan, X., Zhou, Z., Wang, C., & Liu, B. (2024). A Geomagnetic/Odometry Integrated Localization Method for Differential Robot Using Real-Time Sequential Particle Filter. Sensors, 24(7), 2120. https://doi.org/10.3390/s24072120