A Road Defect Detection System Using Smartphones
<p>The architecture of automatic data collection mechanism for road defect classification.</p> "> Figure 2
<p>Acceleration X−axis, Y−axis, Z−axis, and RMS values: (<b>a</b>) when the vehicle passes the speed bump, (<b>b</b>) when the vehicle passes the manhole, and (<b>c</b>) when the vehicle passes the pothole.</p> "> Figure 3
<p>Structure of RDD-CNN model.</p> "> Figure 4
<p>Dataset collection location: (<b>a</b>) training dataset collection location; (<b>b</b>,<b>c</b>) test dataset collection location.</p> "> Figure 5
<p>YOLOv5m-based road defect classification samples.</p> "> Figure 6
<p>Environmental factors obstructing video image classification: (<b>a</b>) when excessive light enters the camera; (<b>b</b>) when excessive light enters a road defect; and (<b>c</b>) when another vehicle obscures a road defect.</p> "> Figure 7
<p>Accuracy confusion matrix for each model: (<b>a</b>) SVM confusion matrix, (<b>b</b>) Random Forest confusion matrix, (<b>c</b>) LSTM confusion matrix, and (<b>d</b>) RDD-CNN confusion matrix.</p> "> Figure 8
<p>Accuracy of various testing models.</p> "> Figure 9
<p>Comparison of lightweight size and processing time for each model.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Vibration Sensor-Based Threshold Method
2.2. Vibration Sensor-Based Machine Learning Method
2.3. Vibration Sensor-Based Deep Learning Method
3. A Proposed Road Defect Detection System
3.1. An Automatic Data Collection Mechanism for Road Defect Classification
3.1.1. Raw Data Collection
3.1.2. Data Preprocessing
3.1.3. Data Generation
3.2. A Road Defect Detection with 1D-CNN
Algorithm 1. Sliding window algorithm. |
Sliding Window Algorithm |
procedure SLIDINGWINDOW (Accelerometer RMS Data, window size, overlap) start ← 0 end ← window size while end ≤ length(Accelerometer RMS Data) do current window ← extract window(Accelerometer RMS Data, start, end) detection result ← apply detection algorithm(current window) if detection result then process detection(current window) start ← end end ← start + window size else start ← start + window size − overlap end ← end + window size − overlap end if end while end procedure |
4. Experimental Results
4.1. Experiment Setup
4.2. Evaluation Results of the Automatic Data Collection System
4.3. Evaluation Results of the RDD-CNN
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lekshmipathy, J.; Velayudhan, S.; Mathew, S. Effect of Combining Algorithms in Smartphone Based Pothole Detection. Int. J. Pavement Res. Technol. 2020, 14, 63–72. [Google Scholar] [CrossRef]
- Seraj, F.; Van Der Zwaag, B.J.; Dilo, A.; Luarasi, T.; Havinga, P. RoADS: A Road Pavement Monitoring System for Anomaly Detection Using Smart Phones. In International Workshop on Modeling Social Media; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 128–146. [Google Scholar] [CrossRef]
- Biswas, S.; Hashemian, L.; Bayat, A. Investigation of Pothole Severity and Maintenance Methods in Canada through Questionnaire Survey. J. Cold Reg. Eng. 2018, 32, 04018002. [Google Scholar] [CrossRef]
- Report Inconvenience in Road Use. Available online: https://www.molit.go.kr/USR/WPGE0201/m_235/DTL.jsp (accessed on 8 February 2024).
- Akagic, A.; Buza, E.; Omanovic, S. Pothole Detection: An Efficient Vision Based Method Using RGB Color Space Image Segmentation. In Proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017. [Google Scholar] [CrossRef]
- Fan, R.; Ozgunalp, U.; Hosking, B.; Liu, M.; Pitas, I. Pothole Detection Based on Disparity Transformation and Road Surface Modeling. IEEE Trans. Image Process. 2020, 29, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.D.; Khan, M.A. Watershed-Based Real-Time Image Processing for Multi-Potholes Detection on Asphalt Road. In Proceedings of the 2019 IEEE 9th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 7 October 2019. [Google Scholar] [CrossRef]
- Baek, J.-W.; Chung, K. Pothole Classification Model Using Edge Detection in Road Image. Appl. Sci. 2020, 10, 6662. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, P.; Sharma, D.; Gupta, V.; Sambyal, N. Detection and Localization of Potholes in Thermal Images Using Deep Neural Networks. Multimed. Tools Appl. 2020, 79, 26265–26284. [Google Scholar] [CrossRef]
- Masihullah, S.; Garg, R.; Mukherjee, P.; Ray, A. Attention Based Coupled Framework for Road and Pothole Segmentation. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021. [Google Scholar] [CrossRef]
- Bhatia, Y.; Rai, R.; Gupta, V.; Aggarwal, N.; Akula, A. Convolutional Neural Networks Based Potholes Detection Using Thermal Imaging. J. King Saud Univ.-Comput. Inf. Sci. 2019, 34, 578–588. [Google Scholar] [CrossRef]
- Alhussan, A.A.; Khafaga, D.S.; El-Kenawy, E.-S.M.; Ibrahim, A.; Eid, M.M.; Abdelhamid, A.A. Pothole and Plain Road Classification Using Adaptive Mutation Dipper Throated Optimization and Transfer Learning for Self Driving Cars. IEEE Access 2022, 10, 84188–84211. [Google Scholar] [CrossRef]
- Chen, H.; Yao, M.; Gu, Q. Pothole Detection Using Location-Aware Convolutional Neural Networks. Int. J. Mach. Learn. Cybern. 2020, 11, 899–911. [Google Scholar] [CrossRef]
- Ye, W.; Jiang, W.; Tong, Z.; Yuan, D.; Xiao, J. Convolutional Neural Network for Pothole Detection in Asphalt Pavement. Road Mater. Pavement Des. 2019, 22, 42–58. [Google Scholar] [CrossRef]
- Ul Haq, M.U.; Ashfaque, M.; Mathavan, S.; Kamal, K.; Ahmed, A. Stereo-Based 3D Reconstruction of Potholes by a Hybrid, Dense Matching Scheme. IEEE Sens. J. 2019, 19, 3807–3817. [Google Scholar] [CrossRef]
- Guan, J.; Yang, X.; Ding, L.; Cheng, X.; Lee, V.C.S.; Jin, C. Automated Pixel-Level Pavement Distress Detection Based on Stereo Vision and Deep Learning. Autom. Constr. 2021, 129, 103788. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, Z.; Wu, Q.; Huang, H.; Xu, M.; Cao, J.; Hu, G. A Pothole Detection Method Based on 3D Point Cloud Segmentation. In Proceedings of the Twelfth International Conference on Digital Image Processing (ICDIP 2020), Osaka, Japan, 19–22 May 2020; SPIE: Bellingham, WA, USA, 2020. [Google Scholar] [CrossRef]
- Li, W.; Ju, H.; Tighe, S.L. Pavement Cracking Detection Based on Three-Dimensional Data Using Improved Active Contour Model. J. Transp. Eng. 2018, 144, 04018006. [Google Scholar] [CrossRef]
- Jiang, C.; Tsai, Y. Enhanced Crack Segmentation Algorithm Using 3D Pavement Data. J. Comput. Civ. Eng. 2016, 30, 04015050. [Google Scholar] [CrossRef]
- Kyriakou, C.; Christodoulou, S.E.; Dimitriou, L. Smartphone-Based Pothole Detection Utilizing Artificial Neural Networks. J. Infrastruct. Syst. 2019, 25, 04019019. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Renault, É.; Milocco, R. Environment Monitoring for Anomaly Detection System Using Smartphones. Sensors 2019, 19, 3834. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, Z.; Hu, S.; Lepine, J.; Na, X.; Ainalis, D.; Stettler, M. An Automated Machine-Learning Approach for Road Pothole Detection Using Smartphone Sensor Data. Sensors 2020, 20, 5564. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhao, W.; Guo, W.; Li, L.; Zhang, D.; Mao, Q.; Li, Q. Smartphone-Based Road Manhole Cover Detection and Classification. Autom. Constr. 2022, 140, 104344. [Google Scholar] [CrossRef]
- Ferjani, I.; Ali Alsaif, S. How to Get Best Predictions for Road Monitoring Using Machine Learning Techniques. PeerJ Comput. Sci. 2022, 8, e941. [Google Scholar] [CrossRef]
- Mednis, A.; Strazdins, G.; Zviedris, R.; Kanonirs, G.; Selavo, L. Real Time Pothole Detection Using Android Smartphones with Accelerometers. In Proceedings of the 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS), Barcelona, Spain, 27–29 June 2011. [Google Scholar] [CrossRef]
- Rishiwal, V.; Khan, H. Automatic Pothole and Speed Breaker Detection Using Android System. In Proceedings of the 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 30 May–3 June 2016. [Google Scholar] [CrossRef]
- Sattar, S.; Li, S.; Chapman, M. Developing a near Real-Time Road Surface Anomaly Detection Approach for Road Surface Monitoring. Measurement 2021, 185, 109990. [Google Scholar] [CrossRef]
- Yi, C.-W.; Chuang, Y.-T.; Nian, C.-S. Toward Crowdsourcing-Based Road Pavement Monitoring by Mobile Sensing Technologies. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1905–1917. [Google Scholar] [CrossRef]
- Li, X.; Huo, D.; Goldberg, D.W.; Chu, T.; Yin, Z.; Hammond, T. Embracing Crowdsensing: An Enhanced Mobile Sensing Solution for Road Anomaly Detection. ISPRS Int. J. Geo-Inf. 2019, 8, 412. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, M.; Zheng, Z.; Huo, M. Toward Practical Crowdsourcing-Based Road Anomaly Detection with Scale-Invariant Feature. IEEE Access 2019, 7, 67666–67678. [Google Scholar] [CrossRef]
- Bustamante-Bello, R.; García-Barba, A.; Arce-Saenz, L.A.; Curiel-Ramirez, L.A.; Izquierdo-Reyes, J.; Ramirez-Mendoza, R.A. Visualizing Street Pavement Anomalies through Fog Computing V2I Networks and Machine Learning. Sensors 2022, 22, 456. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhou, M.; Chen, Y.; Huo, M.; Sun, L.; Zhao, S.; Chen, D. A Fused Method of Machine Learning and Dynamic Time Warping for Road Anomalies Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 827–839. [Google Scholar] [CrossRef]
- Anaissi, A.; Khoa, N.L.D.; Rakotoarivelo, T.; Alamdari, M.M.; Wang, Y. Smart Pothole Detection System Using Vehicle-Mounted Sensors and Machine Learning. J. Civ. Struct. Health Monit. 2019, 9, 91–102. [Google Scholar] [CrossRef]
- Jose; Rojas-Ruiz, C.A.; Santana, A.; Bustamante-Bello, R.; Ramirez-Mendoza, R.A. Environment Classification Using Machine Learning Methods for Eco-Driving Strategies in Intelligent Vehicles. Appl. Sci. 2022, 12, 5578. [Google Scholar] [CrossRef]
- Varona, B.; Monteserin, A.; Teyseyre, A. A Deep Learning Approach to Automatic Road Surface Monitoring and Pothole Detection. Pers. Ubiquitous Comput. 2019, 24, 519–534. [Google Scholar] [CrossRef]
- Luo, D.; Lu, J.; Guo, G. Road Anomaly Detection through Deep Learning Approaches. IEEE Access 2020, 8, 117390–117404. [Google Scholar] [CrossRef]
- Basavaraju, A.; Du, J.; Zhou, F.; Ji, J. A Machine Learning Approach to Road Surface Anomaly Assessment Using Smartphone Sensors. IEEE Sens. J. 2020, 20, 2635–2647. [Google Scholar] [CrossRef]
- Agebure, M.A.; Oyetunji, E.O.; Baagyere, E.Y. A Three-Tier Road Condition Classification System Using a Spiking Neural Network Model. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 1718–1729. [Google Scholar] [CrossRef]
- Available online: https://www.codil.or.kr/filebank/moctroadguide/LS/CIKCLS200015/CIKCLS200015.pdf (accessed on 8 February 2024).
- Jocher, G.; Stoken, A.; Borovec, J.; NanoCode012; ChristopherSTAN; Liu, C.; Laughing; Hogan, A.; lorenzomammana; tkianai; et al. Ultralytics/Yolov5: V3.0. 2020 ultralytics/yolov5: V3.0. 2020. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 21 March 2024).
- Hüsken, M.; Stagge, P. Recurrent Neural Networks for Time Series Classification. Neurocomputing 2003, 50, 223–235. [Google Scholar] [CrossRef]
- Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access 2018, 6, 1662–1669. [Google Scholar] [CrossRef]
- Tang, W.; Long, G.; Liu, L.; Zhou, T.; Jiang, J.; Blumenstein, M. Rethinking 1D-CNN for Time Series Classification: A Stronger Baseline. arXiv 2020, arXiv:2002.10061. [Google Scholar]
- Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized Convolutional Neural Networks for Mobile Devices. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Available online: https://github.com/GyuLimkim/Road_Defect_Dataset/tree/main (accessed on 21 March 2024.).
- González, L.C.; Moreno, R.; Escalante, H.J.; Martínez, F.; Carlos, M.R. Learning Roadway Surface Disruption Patterns Using the Bag of Words Representation. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2916–2928. [Google Scholar] [CrossRef]
- Thorsten, J. Making Large Scale SVM Learning Practical. Tech. Rep. 1999, 169. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A Random Forest Guided Tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Xin, H.; Ye, Y.; Na, X.; Hu, H.; Wang, G.; Wu, C.; Hu, S. Sustainable Road Pothole Detection: A Crowdsourcing Based Multi-Sensors Fusion Approach. Sustainability 2023, 15, 6610. [Google Scholar] [CrossRef]
Method | Strengths | Weaknesses |
---|---|---|
Vision-based method | The number and shape of road defects can be known. | The camera affects light and shadow. |
3D reconstruction method | The shape and depth of road defects can be accurately determined. | The price of equipment is high. |
Vibration-based method | It is the cheapest when compared to a vision-based method and a 3D reconstruction method. | It is difficult to determine the shape or depth of road defects. |
Speed Bump | Manhole | Pothole | |
---|---|---|---|
Ratio of discarded data | 2.483% | 4.787% | 5.817% |
Experiment Environment | Speed Bump | Manhole | Pothole |
---|---|---|---|
Front Dashcam (Day) | 98.4% | 94.8% | 92.3% |
Rear Dashcam (Day) | 82.6% | 68.3% | 61.8% |
Front Dashcam (Night) | 78.3% | 52.5% | 43.8% |
Classification Thresholds | Ratio of Discarded Data | Label Accuracy |
---|---|---|
100% | 14.60% | 100% |
90% | 11.65% | 100% |
80% | 9.86% | 98% |
70% | 4.21% | 96% |
60% | 3.03% | 95% |
Speed Bump | Manhole | Pothole | |
---|---|---|---|
Ratio of discarded data | 2.207% | 18.99% | 20.29% |
Types of Training Datasets | Speed Bump | Manhole | Pothole |
---|---|---|---|
Manually generated data | 99.00% | 88.46% | 87.29% |
Automatically generated data | 99.00% | 87.54% | 86.77% |
Dashboard | Passenger Seat | Cup Holder | Door Pocket | Clothes Pocket | |
---|---|---|---|---|---|
Accuracy | 91.10% | 90.76% | 84.61% | 83.07% | 82.85% |
Models | Hyperparameters |
---|---|
SVM [46] | Kernel = linear, C = 1.0, shrinking = true, tol = 0.001, random state = 0 |
Random Forest [46] | N estimators = 10, max depth = none, min samples split = 1, random state = 0 |
LSTM [49] | Input shape = (300,1), learning rate = 0.001, activation = SoftMax Optimizer = Adam, loss function = categorical cross entropy, dropout = 0.5 |
RDD-CNN | Input shape = (300,1), activation = Swish, kernel size = 4, loss function = categorical cross entropy, optimizer = Adam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Kim, S. A Road Defect Detection System Using Smartphones. Sensors 2024, 24, 2099. https://doi.org/10.3390/s24072099
Kim G, Kim S. A Road Defect Detection System Using Smartphones. Sensors. 2024; 24(7):2099. https://doi.org/10.3390/s24072099
Chicago/Turabian StyleKim, Gyulim, and Seungku Kim. 2024. "A Road Defect Detection System Using Smartphones" Sensors 24, no. 7: 2099. https://doi.org/10.3390/s24072099
APA StyleKim, G., & Kim, S. (2024). A Road Defect Detection System Using Smartphones. Sensors, 24(7), 2099. https://doi.org/10.3390/s24072099