Validation of a Simplified Method for Estimating the Harmonic Response of Rogowski Coils with the Monte Carlo Method
<p>Schematic of the measurement setup.</p> "> Figure 2
<p>Ratio error ∆% of RUT 1 for different frequencies and temperatures [<a href="#B14-sensors-24-01746" class="html-bibr">14</a>].</p> "> Figure 3
<p>Phase displacement <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi mathvariant="sans-serif">φ</mi> </mrow> </semantics></math> of RUT 1 for different frequencies and temperatures [<a href="#B14-sensors-24-01746" class="html-bibr">14</a>].</p> "> Figure 4
<p>Resistance values vs. frequency of the shunt resistor.</p> "> Figure 5
<p>Phase displacement vs. frequency of the shunt resistor.</p> "> Figure 6
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mo>∆</mo> <mi mathvariant="sans-serif">φ</mi> </mrow> <mrow> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">g</mi> </mrow> </msub> </mrow> </semantics></math> at 150 Hz and 250 Hz and at tested temperatures for RUT 1.</p> ">
Abstract
:1. Introduction
2. Scenario
2.1. The Rogowski Coil
2.2. Standards
2.3. Motivation
3. Novel Approach
3.1. The Approach
3.2. Measurement Setup
3.3. Overview of the Tests
3.3.1. Proposed Characterization Method
3.3.2. Reference Method
3.3.3. Analysis of the Results
4. Uncertainty Evaluation
4.1. Uncertainty Source Analysis
4.2. MCM Application
4.3. MCM Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, L.; He, D.; Dai, N.; Cheng, B.; Gong, X. The impact and countermeasures of large-scale electric vehicle access to power grid on China’s environment. Ekoloji 2019, 28, 3393–3395. [Google Scholar]
- Liu, Y.; You, S.; Yao, W.; Cui, Y.; Wu, L.; Zhou, D.; Liu, Y. A distribution level wide area monitoring system for the electric power grid—FNET/GridEye. IEEE Access 2017, 5, 2329–2338. [Google Scholar] [CrossRef]
- Morrissey, K.; Plater, A.; Dean, M. The cost of electric power outages in the residential sector: A willingness to pay approach. Appl. Energy 2018, 212, 141–150. [Google Scholar] [CrossRef]
- Bartolomei, L.; Mingotti, A.; Peretto, L.; Tinarelli, R.; Rinaldi, P. Performance evaluation and comparison of a low-cost, PLL-based acquisition system under off-nominal conditions. IEEE Trans. Instrum. Meas. 2020, 69, 2048–2056. [Google Scholar] [CrossRef]
- Menke, J.; Bornhorst, N.; Braun, M. Distribution system monitoring for smart power grids with distributed generation using artificial neural networks. Int. J. Electr. Power Energy Syst. 2019, 113, 472–480. [Google Scholar] [CrossRef]
- ELi, X.; Wang, Y.; Lu, Z. Graph-based detection for false data injection attacks in power grid. Energy 2023, 263, 125865. [Google Scholar] [CrossRef]
- Leng, D.; Qiu, Z. Identification of Anomaly Detection in Power System State Estimation Based on Fuzzy C-Means Algorithm. Int. Trans. Electr. Energy Syst. 2023, 2023, 7553080. [Google Scholar] [CrossRef]
- Český, L.; Janíček, F.; Skudřík, F.; Zuščak, J. Design and testing of voltage instrument transformers for railway application. In Proceedings of the 10th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA 2019, Stara Lesna, Slovakia, 16–18 September 2019; pp. 315–318. [Google Scholar]
- Lesniewska, E. Modern methods of construction problem solving in designing various types of instrument transformers. Energies 2022, 15, 8199. [Google Scholar] [CrossRef]
- Campos, O.D.L.; Zhu, H. Condition assessment of 653 instrument transformers with on-line PD testing. In Proceedings of the CMD 2016—International Conference on Condition Monitoring and Diagnosis 2016, Xi’an, China, 25–28 September 2016; pp. 168–171. [Google Scholar] [CrossRef]
- Poljak, M.; Bojanić, B. Method for the reduction of in-service instrument transformer explosions. Eur. Trans. Electr. Power 2010, 20, 927–937. [Google Scholar] [CrossRef]
- Santos, J.C.; De Sillos, A.C.; Nascimento, C.G.S. On-field instrument transformers calibration using optical current and voltage transformes. In Proceedings of the 2014 IEEE International Workshop on Applied Measurements for Power Systems, AMPS 2014—Proceedings, Aachen, Germany, 24–26 September 2014; pp. 18–22. [Google Scholar] [CrossRef]
- Mingotti, A.; Peretto, L.; Tinarelli, R.; Zhang, J. Use of COMTRADE fault current data to test inductive current transformers. In Proceedings of the 2019 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2019, Naples, Italy, 4–6 June 2019; pp. 103–107. [Google Scholar] [CrossRef]
- Betti, C.; Mingotti, A.; Tinarelli, R.; Peretto, L. Simplified Test Method for Harmonic Characterization of Rogowski Coils Under Varying Temperatures. In Proceedings of the 2023 IEEE 13th International Workshop on Applied Measurements for Power Systems (AMPS), Bern, Switzerland, 27–29 September 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Mingotti, A.; Peretto, L.; Tinarelli, R. Smart characterization of rogowski coils by using a synthetized signal. Sensors 2020, 20, 3359. [Google Scholar] [CrossRef] [PubMed]
- Faifer, M.; Laurano, C.; Ottoboni, R.; Toscani, S.; Zanoni, M. Characterization of voltage instrument transformers under nonsinusoidal conditions based on the best linear approximation. IEEE Trans. Instrum. Meas. 2018, 67, 2392–2400. [Google Scholar] [CrossRef]
- Letizia, P.S.; Crotti, G.; Giordano, D.; Delle Femine, A.; Gallo, D.; Landi, C.; Luiso, M. Low cost procedure for frequency characterization of voltage instrument transformers. In Proceedings of the I2MTC 2019—2019 IEEE International Instrumentation and Measurement Technology Conference, Auckland, New Zealand, 20–23 May 2019. [Google Scholar] [CrossRef]
- IEC 61869–1:2010; Instrument Transformers—Part 1: General Requirements. International Standardization Organization: Geneva, Switzerland, 2010.
- IEC 61869–6; Instrument Transformers—Part 6: Additional General Requirements for Low-Power Instrument Transformers. International Standardization Organization: Geneva, Switzerland, 2016.
- Mou, J.; Su, J.; Miao, L.; Huang, T. Evaluation of Angle Measurement Uncertainty of Fiber Optic Gyroscope Based on Monte Carlo Method. IEEE Trans. Instrum. Meas. 2021, 70, 9431168. [Google Scholar] [CrossRef]
- Teppati, V.; Bolognesi, C.R. Evaluation and reduction of calibration residual uncertainty in load–pull measurements at millimeter-wave frequencies. IEEE Trans. Instrum. Meas. 2012, 61, 817–822. [Google Scholar] [CrossRef]
- Chen, S.-F.; Amagai, Y.; Maruyama, M.; Kaneko, N.-H. Uncertainty Evaluation of a 10 v RMS Sampling Measurement System Using the AC Programmable Josephson Voltage Standard. IEEE Trans. Instrum. Meas. 2015, 64, 3308–3314. [Google Scholar] [CrossRef]
- De Souza, L.A.A.; Pinto, M.V.V.; Martins, M.B.; Lima, A.C.S. Modeling of a Resistive Voltage Divider by Rational Functions: Uncertainty Evaluation. IEEE Trans. Instrum. Meas. 2021, 70, 9310699. [Google Scholar] [CrossRef]
- Samimi, M.H.; Mahari, A.; Farahnakian, M.A.; Mohseni, H. The Rogowski Coil Principles and Applications: A Review. IEEE Sens. J. 2014, 15, 651–658. [Google Scholar] [CrossRef]
- Sun, C.; Yan, J.; Geng, Y.; Zhang, K.; Xu, M.; Liu, J. Research on a novel current transducer based on discrete Rogowski coils. In Proceedings of the CMD 2016—International Conference on Condition Monitoring and Diagnosis, Xi’an, China, 25–28 September 2016; pp. 798–801. [Google Scholar] [CrossRef]
- IEC 61869–10; Instrument Transformers—Part 10: Additional Requirements for Low–Power Passive Current Transformers. International Standardization Organization: Geneva, Switzerland, 2018.
- ISO/IEC Guide 98—3:2008; GUM Uncertainty of Measurement, Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995). International Standardization Organization: Geneva, Switzerland, 2008.
- Supplement 1 BIPM JCGM 101:2008; Evaluation of Measurement Data—Supplement 1 to the Guide to the Expression of Uncertainty in Measurement—Propagation of Distributions Using a Monte Carlo Method. International Standardization Organization: Geneva, Switzerland, 2008.
- Langella, R.; Testa, A.; Alii, E. IEEE Std 519—2014. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. IEEE Standard for Harmonic Control in Electric Power Systems. In IEEE Std 519-2022. 5 August 2022. Available online: https://iris.unicampania.it/handle/11591/178750 (accessed on 11 December 2023).
RUT 1 | RUT 2 | RUT 3 | |
---|---|---|---|
Accuracy [%] | ±0.5 | ±1 | ±1 |
Output voltage at 50 Hz [mV/kA] | 85 | 100 | 100 |
Type | Flexible split core | Flexible split core | Flexible split core |
Rated current [A] | 1000 | – | 1000 |
Inner diameter [mm] | 100 | 120 | 68 |
Frequency [Hz] | Amplitude [A] |
---|---|
50 | 100 |
150 | 50 |
250 | 50 |
350 | 50 |
550 | 50 |
650 | 50 |
850 | 50 |
1250 | 36 |
2500 | 36 |
Accuracy Class | Ratio Error at Harmonic [%] | ||||
---|---|---|---|---|---|
2nd to 4th | 5th and 6th | 7th to 9th | 10th to 13th | Above 13th | |
0.5 | 5 | 10 | 20 | 20 | +20 −100 |
1 | 10 | 20 | 20 | 20 | +20 −100 |
Phase displacement at harmonic [mrad] | |||||
0.5 | 87 | 174 | 349 | 349 | – |
1 | 174 | 349 | 349 | 349 | – |
Gain Error [%] | Offset Error [%] | Noise [µV] |
---|---|---|
0.07 | 0.005 | 3.9 |
Frequency [Hz] | Output [%] | Range [%] | Phase Angle Accuracy [°] | Distortion [mA] | Noise [dB] |
---|---|---|---|---|---|
10 to 69 | 0.011 | 0.003 | 0.006 | 2.5 | −70 |
69 to 180 | 0.012 | ||||
180 to 450 | 0.025 | ||||
450 to 850 | 0.045 | ||||
850 to 6000 | 0.052 | 0.005 | 0.325 | 39.7 |
Temp. [°C] | Freq. [Hz] | Signal | Min. [mV] | Mean [mV] | Max. [mV] | Std [mV] |
---|---|---|---|---|---|---|
20 | 50 | Est. | 7.095 | 7.102 | 7.109 | 0.004 |
Ref. | 7.096 | 7.100 | 7.105 | 0.003 | ||
20 | 150 | Est. | 10.650 | 10.658 | 10.666 | 0.004 |
Ref. | 10.645 | 10.652 | 10.659 | 0.004 | ||
20 | 250 | Est. | 17.747 | 17.759 | 17.771 | 0.007 |
Ref. | 17.743 | 17.754 | 17.766 | 0.007 | ||
20 | 350 | Est. | 24.84 | 24.86 | 24.88 | 0.01 |
Ref. | 24.84 | 24.86 | 24.88 | 0.01 | ||
20 | 550 | Est. | 39.04 | 39.07 | 39.10 | 0.02 |
Ref. | 39.04 | 39.07 | 39.09 | 0.02 | ||
20 | 650 | Est. | 46.15 | 46.18 | 46.21 | 0.02 |
Ref. | 46.14 | 46.17 | 46.20 | 0.02 | ||
20 | 850 | Est. | 60.36 | 60.40 | 60.44 | 0.02 |
Ref. | 60.34 | 60.38 | 60.42 | 0.02 | ||
20 | 1250 | Est. | 63.91 | 63.95 | 63.99 | 0.03 |
Ref. | 63.89 | 63.94 | 63.98 | 0.03 | ||
20 | 2500 | Est. | 127.85 | 127.93 | 128.02 | 0.05 |
Ref. | 127.82 | 127.90 | 127.99 | 0.05 | ||
40 | 50 | Est. | 7.105 | 7.112 | 7.120 | 0.004 |
Ref. | 7.101 | 7.106 | 7.111 | 0.003 | ||
40 | 150 | Est. | 10.653 | 10.660 | 10.668 | 0.004 |
Ref. | 10.653 | 10.660 | 10.667 | 0.004 | ||
40 | 250 | Est. | 17.762 | 17.774 | 17.787 | 0.007 |
Ref. | 17.757 | 17.768 | 17.781 | 0.007 | ||
40 | 350 | Est. | 24.86 | 24.88 | 24.89 | 0.01 |
Ref. | 24.86 | 24.88 | 24.89 | 0.01 | ||
40 | 550 | Est. | 39.08 | 39.10 | 39.13 | 0.02 |
Ref. | 39.07 | 39.10 | 39.12 | 0.02 | ||
40 | 650 | Est. | 46.19 | 46.22 | 46.25 | 0.02 |
Ref. | 46.18 | 46.21 | 46.24 | 0.02 | ||
40 | 850 | Est. | 60.39 | 60.43 | 60.47 | 0.02 |
Ref. | 60.39 | 60.43 | 60.47 | 0.02 | ||
40 | 1250 | Est. | 63.96 | 64.00 | 64.04 | 0.03 |
Ref. | 63.95 | 63.99 | 64.03 | 0.03 | ||
40 | 2500 | Est. | 127.93 | 128.02 | 128.10 | 0.05 |
Ref. | 127.92 | 128.01 | 128.09 | 0.05 | ||
−5 | 50 | Est. | 7.077 | 7.085 | 7.092 | 0.004 |
Ref. | 7.090 | 7.094 | 7.099 | 0.003 | ||
−5 | 150 | Est. | 10.640 | 10.648 | 10.655 | 0.004 |
Ref. | 10.636 | 10.643 | 10.650 | 0.004 | ||
−5 | 250 | Est. | 17.734 | 17.746 | 17.758 | 0.007 |
Ref. | 17.728 | 17.740 | 17.752 | 0.007 | ||
−5 | 350 | Est. | 24.83 | 24.84 | 24.86 | 0.01 |
Ref. | 24.82 | 24.84 | 24.86 | 0.01 | ||
−5 | 550 | Est. | 39.02 | 39.04 | 39.07 | 0.02 |
Ref. | 39.01 | 39.03 | 39.06 | 0.02 | ||
−5 | 650 | Est. | 46.12 | 46.15 | 46.18 | 0.02 |
Ref. | 46.10 | 46.13 | 46.17 | 0.02 | ||
−5 | 850 | Est. | 60.31 | 60.35 | 60.39 | 0.02 |
Ref. | 60.29 | 60.33 | 60.37 | 0.02 | ||
−5 | 1250 | Est. | 63.86 | 63.91 | 63.95 | 0.03 |
Ref. | 63.84 | 63.89 | 63.93 | 0.03 | ||
−5 | 2500 | Est. | 127.77 | 127.86 | 127.94 | 0.05 |
Ref. | 127.72 | 127.81 | 127.89 | 0.05 | ||
20 °C | 50 | Est. | 7.096 | 7.103 | 7.110 | 0.004 |
Ref. | 7.095 | 7.100 | 7.105 | 0.003 | ||
20 °C | 150 | Est. | 10.641 | 10.648 | 10.656 | 0.004 |
Ref. | 10.644 | 10.652 | 10.659 | 0.004 | ||
20 °C | 250 | Est. | 17.741 | 17.753 | 17.765 | 0.007 |
Ref. | 17.743 | 17.754 | 17.766 | 0.007 | ||
20 °C | 350 | Est. | 24.85 | 24.86 | 24.88 | 0.01 |
Ref. | 24.84 | 24.86 | 24.87 | 0.01 | ||
20 °C | 550 | Est. | 39.05 | 39.08 | 39.10 | 0.02 |
Ref. | 39.04 | 39.07 | 39.09 | 0.02 | ||
20 °C | 650 | Est. | 46.14 | 46.18 | 46.21 | 0.02 |
Ref. | 46.14 | 46.17 | 46.20 | 0.02 | ||
20 °C | 850 | Est. | 60.35 | 60.39 | 60.43 | 0.02 |
Ref. | 60.34 | 60.38 | 60.42 | 0.02 | ||
20 °C | 1250 | Est. | 63.90 | 63.95 | 63.99 | 0.03 |
Ref. | 63.89 | 63.94 | 63.98 | 0.03 | ||
20 °C | 2500 | Est. | 127.85 | 127.94 | 128.02 | 0.05 |
Ref. | 127.82 | 127.91 | 127.99 | 0.05 |
Temp. [°C] | Freq. [Hz] | Signal | Min [mrad] | Mean [mrad] | Max [mrad] | Std [mrad] |
---|---|---|---|---|---|---|
20 | 50 | Est. | −13.1 | −12.4 | −11.8 | 0.3 |
Ref. | −5.6 | −5.5 | −5.4 | 0.1 | ||
20 | 150 | Est. | −18.5 | −18.2 | −17.9 | 0.2 |
Ref. | −16.7 | −16.5 | −16.3 | 0.1 | ||
20 | 250 | Est. | −28.9 | −28.5 | −28.1 | 0.3 |
Ref. | −27.9 | −27.5 | −27.1 | 0.3 | ||
20 | 350 | Est. | −34.6 | −34.2 | −33.8 | 0.3 |
Ref. | −34.0 | −33.6 | −33.2 | 0.3 | ||
20 | 550 | Est. | −51.7 | −50.9 | −50.2 | 0.5 |
Ref. | −51.3 | −50.5 | −49.8 | 0.5 | ||
20 | 650 | Est. | −61.2 | −60.5 | −59.7 | 0.5 |
Ref. | −60.8 | −60.0 | −59.3 | 0.5 | ||
20 | 850 | Est. | −79.6 | −78.9 | −78.1 | 0.5 |
Ref. | −79.4 | −78.7 | −77.9 | 0.5 | ||
20 | 1250 | Est. | −54 | −49 | −44 | 3 |
Ref. | −54 | −49 | −44 | 3 | ||
20 | 2500 | Est. | −103 | −98 | −92 | 3 |
Ref. | −103 | −98 | −92 | 3 | ||
40 | 50 | Est. | −16.7 | −16.0 | −15.4 | 0.3 |
Ref. | −5.6 | −5.5 | −5.4 | 0.1 | ||
40 | 150 | Est. | −20.0 | −19.7 | −19.4 | 0.2 |
Ref. | −16.7 | −16.5 | −16.3 | 0.1 | ||
40 | 250 | Est. | −29.9 | −29.5 | −29.1 | 0.3 |
Ref. | −28.0 | −27.6 | −27.2 | 0.3 | ||
40 | 350 | Est. | −35.5 | −35.1 | −34.6 | 0.3 |
Ref. | −34.0 | −33.6 | −33.2 | 0.3 | ||
40 | 550 | Est. | −52.1 | −51.4 | −50.7 | 0.5 |
Ref. | −51.3 | −50.6 | −49.8 | 0.5 | ||
40 | 650 | Est. | −61.4 | −60.7 | −60.0 | 0.5 |
Ref. | −60.8 | −60.1 | −59.3 | 0.5 | ||
40 | 850 | Est. | −79.9 | −79.2 | −78.4 | 0.5 |
Ref. | −79.5 | −78.8 | −78.0 | 0.5 | ||
40 | 1250 | Est. | −55 | −49 | −44 | 3 |
Ref. | −55 | −49 | −44 | 3 | ||
40 | 2500 | Est. | −103 | −98 | −93 | 3 |
Ref. | −103 | −98 | −92 | 3 | ||
−5 | 50 | Est. | −9.3 | −8.6 | −7.9 | 0.3 |
Ref. | −5.6 | −5.5 | −5.4 | 0.1 | ||
−5 | 150 | Est. | −17.5 | −17.2 | −16.9 | 0.2 |
Ref. | −16.7 | −16.5 | −16.3 | 0.1 | ||
−5 | 250 | Est. | −28.3 | −27.9 | −27.4 | 0.3 |
Ref. | −27.9 | −27.5 | −27.1 | 0.3 | ||
−5 | 350 | Est. | −34.2 | −33.8 | −33.4 | 0.3 |
Ref. | −33.9 | −33.5 | −33.1 | 0.3 | ||
−5 | 550 | Est. | −51.1 | −50.4 | −49.6 | 0.5 |
Ref. | −51.2 | −50.4 | −49.7 | 0.5 | ||
−5 | 650 | Est. | −60.8 | −60.1 | −59.3 | 0.5 |
Ref. | −60.7 | −60.0 | −59.2 | 0.5 | ||
−5 | 850 | Est. | −79.4 | −78.6 | −77.9 | 0.5 |
Ref. | −79.4 | −78.6 | −77.9 | 0.5 | ||
−5 | 1250 | Est. | −54 | −49 | −43 | 3 |
Ref. | −54 | −49 | −43 | 3 | ||
−5 | 2500 | Est. | −103 | −98 | −93 | 3 |
Ref. | −103 | −97 | −92 | 3 | ||
20 °C | 50 | Est. | −13.1 | −12.5 | −11.8 | 0.3 |
Ref. | −5.6 | −5.5 | −5.4 | 0.1 | ||
20 °C | 150 | Est. | −18.8 | −18.5 | −18.2 | 0.2 |
Ref. | −16.7 | −16.5 | −16.3 | 0.1 | ||
20 °C | 250 | Est. | −29.3 | −28.9 | −28.4 | 0.3 |
Ref. | −27.9 | −27.5 | −27.1 | 0.3 | ||
20 °C | 350 | Est. | −34.6 | −34.2 | −33.8 | 0.3 |
Ref. | −34.0 | −33.6 | −33.2 | 0.3 | ||
20 °C | 550 | Est. | −51.7 | −51.0 | −50.2 | 0.5 |
Ref. | −51.3 | −50.5 | −49.8 | 0.5 | ||
20 °C | 650 | Est. | −61.1 | −60.4 | −59.7 | 0.5 |
Ref. | −60.8 | −60.0 | −59.3 | 0.5 | ||
20 °C | 850 | Est. | −79.6 | −78.9 | −78.1 | 0.5 |
Ref. | −79.5 | −78.7 | −78.0 | 0.5 | ||
20 °C | 1250 | Est. | −54 | −49 | −44 | 3 |
Ref. | −54 | −49 | −43 | 3 | ||
20 °C | 2500 | Est. | −103 | −98 | −92 | 3 |
Ref. | −103 | −98 | −92 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betti, C.; Mingotti, A.; Tinarelli, R.; Peretto, L. Validation of a Simplified Method for Estimating the Harmonic Response of Rogowski Coils with the Monte Carlo Method. Sensors 2024, 24, 1746. https://doi.org/10.3390/s24061746
Betti C, Mingotti A, Tinarelli R, Peretto L. Validation of a Simplified Method for Estimating the Harmonic Response of Rogowski Coils with the Monte Carlo Method. Sensors. 2024; 24(6):1746. https://doi.org/10.3390/s24061746
Chicago/Turabian StyleBetti, Christian, Alessandro Mingotti, Roberto Tinarelli, and Lorenzo Peretto. 2024. "Validation of a Simplified Method for Estimating the Harmonic Response of Rogowski Coils with the Monte Carlo Method" Sensors 24, no. 6: 1746. https://doi.org/10.3390/s24061746
APA StyleBetti, C., Mingotti, A., Tinarelli, R., & Peretto, L. (2024). Validation of a Simplified Method for Estimating the Harmonic Response of Rogowski Coils with the Monte Carlo Method. Sensors, 24(6), 1746. https://doi.org/10.3390/s24061746