Mechanical Properties and Fatigue Life Analysis of Motion Cables in Sensors under Cyclic Loading
<p>Internal composition of cables: (<b>a</b>) overall schematic of the drive mechanism; (<b>b</b>) overall arrangement of the 39 wires in cables; (<b>c</b>) arrangement of the copper wires in each wire.</p> "> Figure 2
<p>Comparison of poses of the physical model and the simulation model at the initial and final angles: (<b>a</b>) front view of the physical model at the initial angle; (<b>b</b>) front view of the physical model at the final angle; (<b>c</b>) side view of the physical model at the final angle; (<b>d</b>) front view of the simulation model at the initial angle; (<b>e</b>) front view of the simulation model at the final angle; (<b>f</b>) side view of the simulation model at the final angle.</p> "> Figure 3
<p>Comparison between physical results and finite element results.</p> "> Figure 4
<p>Mises stress distribution, the middle part of cable bend, and the position of the probes as well as the energy–strain curves at different angles of rotation: (<b>a</b>) 5°; (<b>b</b>) 42.5°; (<b>c</b>) 85°; (<b>d</b>) 170°; (<b>e</b>) position of the applied probes; (<b>f</b>) energy–strain curves at the six probe points.</p> "> Figure 5
<p>Cables’ model and stress distribution for different inclination angles: (<b>a</b>) 0°; (<b>b</b>) 3°; (<b>c</b>) 6°; (<b>d</b>) 9°; (<b>e</b>) 12°; (<b>f</b>) 15°; (<b>g</b>) 0°; (<b>h</b>) 3°; (<b>i</b>) 6°; (<b>j</b>) 9°; (<b>k</b>) 12°; (<b>l</b>) 15°.</p> "> Figure 6
<p>Schematic of working conditions and stress distribution for different fixed points. (<b>a</b>) Schematic of fixed-point scheme A; (<b>b</b>) schematic of fixed-point scheme B; (<b>c</b>) stress distribution of fixed-point scheme A on S11; (<b>d</b>) stress distribution of fixed-point scheme B on S11; (<b>e</b>) stress distribution of fixed-point scheme A on S23; (<b>f</b>) stress distribution of fixed-point scheme B on S23 torsion angle of neighboring units in fixed-point scheme A; (<b>g</b>) position of two neighboring units in the initial state; (<b>h</b>) torsion angle of neighboring units in fixed-point scheme A; (<b>i</b>) torsion angle of neighboring units in fixed-point scheme B.</p> "> Figure 7
<p>Strain versus strain energy curves in models A and B.</p> "> Figure 8
<p>Number of cyclic loads for optimum conditions: (<b>a</b>) fatigue life distribution; (<b>b</b>) strain vs. fatigue life curves for three tracking points.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometrical Parameters
2.2. Modelling Method
2.3. Model Correctness Verification
2.4. Boundary Conditions and Mesh Division
3. Results
3.1. Effect of Cable Inclination on Stress Distribution in Members
3.2. Effect of Cable Fixation Points on Stress Distribution in Members
3.3. Fatigue Simulation and Analysis of Cables under Optimal Working Conditions
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, C.; Lu, Y.; Wang, Y.; Xue, F.; Ren, Z. Research on Assembly Technology of Complex Flexible Outcabin Motional Cable for Spacecraft. IOP Conf. Ser. Mater. Sci. Eng. 2019, 611, 012075. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Su, G. An Integrated Approach for Electromagnetic Compatible Commercial Aircraft Engine Cable Harnessing. J. Ind. Inf. Integr. 2022, 27, 100344. [Google Scholar] [CrossRef]
- Verma, A.K.; Srividya, A.; Karanki, D.R. (Eds.) Mechanical Reliability. In Reliability and Safety Engineering; Springer Series in Reliability Engineering; Springer: London, UK, 2010; pp. 229–266. [Google Scholar]
- Liu, J.; Zhao, T.; Ning, R.; Liu, J. Physics-Based Modeling and Simulation for Motional Cable Harness Design. Chin. J. Mech. Eng. 2014, 27, 1075–1082. [Google Scholar] [CrossRef]
- Giglio, M.; Manes, A. Life Prediction of a Wire Rope Subjected to Axial and Bending Loads. Eng. Fail. Anal. 2005, 12, 549–568. [Google Scholar] [CrossRef]
- Foti, F.; Martinelli, L. Mechanical Modeling of Metallic Strands Subjected to Tension, Torsion and Bending. Int. J. Solids Struct. 2016, 91, 1–17. [Google Scholar] [CrossRef]
- Frikha, A.; Cartraud, P.; Treyssède, F. Mechanical Modeling of Helical Structures Accounting for Translational Invariance. Part 1: Static Behavior. Int. J. Solids Struct. 2013, 50, 1373–1382. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.Q.; Zhang, W.H.; Lu, Q.R. Analysis on Damage Evolution and Corrosion Fatigue Performance of High-Strength Steel Wire for Bridge Cable: Experiments and Numerical Simulation. Theor. Appl. Fract. Mech. 2020, 107, 102571. [Google Scholar] [CrossRef]
- Utting, W.S.; Jones, N. The Response of Wire Rope Strands to Axial Tensile Loads—Part I. Experimental Results and Theoretical Predictions. Int. J. Mech. Sci. 1987, 29, 605–619. [Google Scholar] [CrossRef]
- Utting, W.S.; Jones, N. The Response of Wire Rope Strands to Axial Tensile Loads—Part II. Comparison of Experimental Results and Theoretical Predictions. Int. J. Mech. Sci. 1987, 29, 621–636. [Google Scholar] [CrossRef]
- Judge, R.; Yang, Z.; Jones, S.W.; Beattie, G. Full 3D Finite Element Modelling of Spiral Strand Cables. Constr. Build. Mater. 2012, 35, 452–459. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, Z.; Liu, H.; Wang, X. Finite Element Study of Behavior and Interface Force Conditions of Seven-Wire Strand under Axial and Lateral Loading. Constr. Build. Mater. 2014, 66, 10–18. [Google Scholar] [CrossRef]
- Nawrocki, A.; Labrosse, M. A Finite Element Model for Simple Straight Wire Rope Strands. Comput. Struct. 2000, 77, 345–359. [Google Scholar] [CrossRef]
- Ghoreishi, S.R.; Messager, T.; Cartraud, P.; Davies, P. Validity and Limitations of Linear Analytical Models for Steel Wire Strands under Axial Loading, Using a 3D FE Model. Int. J. Mech. Sci. 2007, 49, 1251–1261. [Google Scholar] [CrossRef]
- Jiang, W.G.; Yao, M.S.; Walton, J.M. A Concise Finite Element Model for Simple Straight Wire Rope Strand. Int. J. Mech. Sci. 1999, 41, 143–161. [Google Scholar] [CrossRef]
- Zhou, Z.; He, J.; Zhang, Y.; Yu, J.; Zhang, S. Development and Performance Study of Fiber Bragg Grating Flexible Cable Strain Sensor. Optik 2023, 273, 170505. [Google Scholar] [CrossRef]
- Liang, B.; Zhao, Z.; Wu, X.; Liu, H. The Establishment of a Numerical Model for Structural Cables Including Friction. J. Constr. Steel Res. 2017, 139, 424–436. [Google Scholar] [CrossRef]
- Zeng, Z.; Barros, A.; Coit, D. Dependent Failure Behavior Modeling for Risk and Reliability: A Systematic and Critical Literature Review. Reliab. Eng. Syst. Saf. 2023, 239, 109515. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, S. Lifetime Distribution Based Degradation Analysis. IEEE Trans. Reliab. 2005, 54, 3–10. [Google Scholar] [CrossRef]
- Duan, D.-L.; Wu, X.-Y.; Deng, H.-Z. Reliability Evaluation in Substations Considering Operating Conditions and Failure Modes. IEEE Trans. Power Deliv. 2012, 27, 309–316. [Google Scholar] [CrossRef]
- Yu, S.; Yan, C.; Liu, C.; Ou, J. Fatigue Life Evaluation of Parallel Steel-Wire Cables under the Combined Actions of Corrosion and Traffic Load. Struct. Control Health Monit. 2023, 2023, 1–25. [Google Scholar] [CrossRef]
- Feng, B.; Wang, X.; Wu, Z. Fatigue Life Assessment of FRP Cable for Long-Span Cable-Stayed Bridge. Compos. Struct. 2019, 210, 159–166. [Google Scholar] [CrossRef]
- Nelson, W. Graphical Analysis of Accelerated Life Test Data with the Inverse Power Law Model. IEEE Trans. Reliab. 1972, R-21, 2–11. [Google Scholar] [CrossRef]
- Stanova, E.; Fedorko, G.; Fabian, M.; Kmet, S. Computer Modelling of Wire Strands and Ropes Part II: Finite Element-Based Applications. Adv. Eng. Softw. 2011, 42, 322–331. [Google Scholar] [CrossRef]
- Wu, J.Y.; Kazanzides, P.; Unberath, M. Leveraging Vision and Kinematics Data to Improve Realism of Biomechanic Soft Tissue Simulation for Robotic Surgery. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Sobhaniasl, M.; Petrini, F.; Karimirad, M.; Bontempi, F. Fatigue Life Assessment for Power Cables in Floating Offshore Wind Turbines. Energies 2020, 13, 3096. [Google Scholar] [CrossRef]
- Naess, A.; Leira, B.J.; Batsevych, O. Reliability Analysis of Large Structural Systems. Probabilistic Eng. Mech. 2012, 28, 164–168. [Google Scholar] [CrossRef]
- Finzi, Y.; Hearn, E.H.; Ben-Zion, Y.; Lyakhovsky, V. Structural Properties and Deformation Patterns of Evolving Strike-Slip Faults: Numerical Simulations Incorporating Damage Rheology. Pure Appl. Geophys. 2009, 166, 1537–1573. [Google Scholar] [CrossRef]
- Ameling, J.M.; Auguste, P.; Ephraim, P.L.; Lewis-Boyer, L.; DePasquale, N.; Greer, R.C.; Crews, D.C.; Powe, N.R.; Rabb, H.; Boulware, L.E. Development of a Decision Aid to Inform Patients’ and Families’ Renal Replacement Therapy Selection Decisions. BMC Med. Inform. Decis. Mak. 2012, 12, 140. [Google Scholar] [CrossRef] [PubMed]
- Fameso, F.; Ramakokovhu, U.; Desai, D.; Salifu, S. Effects of Manufacturing-Induced Operating-Conditions Amplified Stresses on Fatigue-Life Prediction of Micro Gas Turbine Blades—A Simulation-Based Study. J. Phys. Conf. Ser. 2022, 2224, 012043. [Google Scholar] [CrossRef]
- Jiang, W.G.; Henshall, J.L.; Walton, J.M. A Concise Finite Element Model for Three-Layered Straight Wire Rope Strand. Int. J. Mech. Sci. 2000, 42, 63–86. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, K.; Jia, X.; Wang, D.; Wang, S.; Luo, Y.; Ge, S. Bending Fatigue Behaviour of Bearing Ropes Working around Pulleys of Different Materials. Eng. Fail. Anal. 2013, 33, 37–47. [Google Scholar] [CrossRef]
- Chiang, Y.J. Characterizing Simple-Stranded Wire Cables under Axial Loading. Finite Elem. Anal. Des. 1996, 24, 49–66. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Wang, S.; Ge, S. Finite Element Analysis of Hoisting Rope and Fretting Wear Evolution and Fatigue Life Estimation of Steel Wires. Eng. Fail. Anal. 2013, 27, 173–193. [Google Scholar] [CrossRef]
- Velinsky, S.A. General Nonlinear Theory for Complex Wire Rope. Int. J. Mech. Sci. 1985, 27, 497–507. [Google Scholar] [CrossRef]
- Elata, D.; Eshkenazy, R.; Weiss, M.P. The Mechanical Behavior of a Wire Rope with an Independent Wire Rope Core. Int. J. Solids Struct. 2004, 41, 1157–1172. [Google Scholar] [CrossRef]
- Chaplin, C.R. Failure Mechanisms in Wire Ropes. Eng. Fail. Anal. 1995, 2, 45–57. [Google Scholar] [CrossRef]
- Fu, M.W.; Yong, M.S.; Muramatsu, T. Die Fatigue Life Design and Assessment via CAE Simulation. Int. J. Adv. Manuf. Technol. 2008, 35, 843–851. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J. Prediction of Cable Behavior Using Finite Element Analysis Results for Flexible Cables. Sensors 2023, 23, 5707. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Jian, B.; Zhang, Y.; Xia, R.; Hu, G. A Normal Contact Force Model for Viscoelastic Bodies and Its Finite Element Modeling Verification. Mech. Mach. Theory 2023, 181, 105202. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Z.; Chen, Y.; Lv, Y.; Chouw, N. Finite Element Simulation of an Upliftable Rigid Frame Bridge under Earthquakes: Experimental Verification. Soil Dyn. Earthq. Eng. 2023, 165, 107716. [Google Scholar] [CrossRef]
Component | Materials | Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio | Yield Strength (MPa) | Tensile Strength (MPa) |
---|---|---|---|---|---|---|
Main part | Aluminum alloy | 4510 | 117.2 | 0.33 | 860 | 900 |
Cables | Copper | 8890 | 110 | 0.326 | 369 | 448 |
Cables shell | Polytetrafluoroethylene | 1750 | 0.6 | 0.4 | 45 | 34.5 |
Ring of crimp | Aluminum | 2670 | 72 | 0.3 | 80 | 175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Guan, W.; Ding, Y.; Hang, C.; Zhou, Y.; Zou, X.; Yue, S. Mechanical Properties and Fatigue Life Analysis of Motion Cables in Sensors under Cyclic Loading. Sensors 2024, 24, 1109. https://doi.org/10.3390/s24041109
Liang W, Guan W, Ding Y, Hang C, Zhou Y, Zou X, Yue S. Mechanical Properties and Fatigue Life Analysis of Motion Cables in Sensors under Cyclic Loading. Sensors. 2024; 24(4):1109. https://doi.org/10.3390/s24041109
Chicago/Turabian StyleLiang, Weizhe, Wei Guan, Ying Ding, Chunjin Hang, Yan Zhou, Xiaojing Zou, and Shenghai Yue. 2024. "Mechanical Properties and Fatigue Life Analysis of Motion Cables in Sensors under Cyclic Loading" Sensors 24, no. 4: 1109. https://doi.org/10.3390/s24041109
APA StyleLiang, W., Guan, W., Ding, Y., Hang, C., Zhou, Y., Zou, X., & Yue, S. (2024). Mechanical Properties and Fatigue Life Analysis of Motion Cables in Sensors under Cyclic Loading. Sensors, 24(4), 1109. https://doi.org/10.3390/s24041109