Joint Beamforming and Phase Shifts Design for RIS-Aided Multi-User Full-Duplex Systems in Smart Cities
<p>A multi-user RIS-aided full-duplex system in urban outdoor environment.</p> "> Figure 2
<p>An MDP of RIS controller and environment.</p> "> Figure 3
<p>Framework of the SAC.</p> "> Figure 4
<p>Simulation setup.</p> "> Figure 5
<p>Optimizer performance. System parameters: <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi mathvariant="normal">t</mi> </msub> <mo>=</mo> <msub> <mi>N</mi> <mi mathvariant="normal">r</mi> </msub> <mo>=</mo> <mi>J</mi> <mo>=</mo> <mi>K</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> m in scenario one.</p> "> Figure 6
<p>Convergence performance. System parameters: <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> m.</p> "> Figure 7
<p>Impact of the horizontal distance between BS and RIS. System parameters: <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi mathvariant="normal">t</mi> </msub> <mo>=</mo> <msub> <mi>N</mi> <mi mathvariant="normal">r</mi> </msub> <mo>=</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mi>K</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> dBm,<math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> dBm. (<b>a</b>) Sum SE versus <span class="html-italic">x</span> in scenario one; (<b>b</b>) Sum SE versus <span class="html-italic">x</span> in scenario two.</p> "> Figure 8
<p>Impact of the number of RIS reflection elements. System parameters: <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi mathvariant="normal">t</mi> </msub> <mo>=</mo> <msub> <mi>N</mi> <mi mathvariant="normal">r</mi> </msub> <mo>=</mo> <mi>J</mi> <mo>=</mo> <mi>K</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> m.</p> "> Figure 9
<p>Impact of the number of RIS resolution bits. System parameters: <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi mathvariant="normal">t</mi> </msub> <mo>=</mo> <msub> <mi>N</mi> <mi mathvariant="normal">r</mi> </msub> <mo>=</mo> <mi>J</mi> <mo>=</mo> <mi>K</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> m.</p> "> Figure 10
<p>Impact of the level of residual self-interference. System parameters: <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi mathvariant="normal">t</mi> </msub> <mo>=</mo> <msub> <mi>N</mi> <mi mathvariant="normal">r</mi> </msub> <mo>=</mo> <mi>J</mi> <mo>=</mo> <mi>K</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> m.</p> "> Figure 11
<p>Impact of the transmit power. System parameters: <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi mathvariant="normal">t</mi> </msub> <mo>=</mo> <msub> <mi>N</mi> <mi mathvariant="normal">r</mi> </msub> <mo>=</mo> <mi>J</mi> <mo>=</mo> <mi>K</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> m. (<b>a</b>) Sum SE versus <span class="html-italic">P</span>; (<b>b</b>) Sum SE versus <span class="html-italic">p</span>.</p> "> Figure 12
<p>Impact of the rician factor. System parameters: <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi mathvariant="normal">t</mi> </msub> <mo>=</mo> <msub> <mi>N</mi> <mi mathvariant="normal">r</mi> </msub> <mo>=</mo> <mi>J</mi> <mo>=</mo> <mi>K</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> dBm, <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> m.</p> ">
Abstract
:1. Introduction
- We introduce a discrete phase shifts RIS model in the blockage of the line-of-sight (LoS) outdoor environment of smart cities. The objective and constraints concerning the residual SI and LI are formulated according to two typical scenarios. Under the two scenarios, we can focus on the influence of the primary interference. Next, a two-step algorithm based on the variable types is proposed, and we can further emphasize the proposal advantage through the scenario handoff.
- Specifically, the original optimization problem is decomposed into two subproblems in light of the type of variables. We attempt to optimize the transmitting and receive beamforming matrices through fixed phase shifts in subproblem one. Due to the non-convexity of this problem, we design a novel successive convex approximation (SCA) method to obtain the approximate convex lower bound of the objective function and constraints. Therefore, the original non-convex problem is transformed into a convex one that can be directly solved.
- Then, we tackle subproblem two to optimize the phase shifts vector via given beamforming matrices. In view of the non-convex optimization for the discrete variable to be solved, we develop a discrete soft actor–critic (SAC) algorithm based on DRL. We seek to maximize the reward to obtain the optimal sum SE by defining the corresponding action, state, and reward. Remarkably, our devised DRL-based method only involves discrete phase shifts, dramatically reducing the dimensions of the action space. Additionally, the state of the environment is a vector consisting of signal to interference-plus-noise ratio (SINR) of each IoT device, which can be efficiently applied to the multi-user case.
- Finally, after iteratively optimizing the beamforming matrices and phase shifts vector, we evaluate the performance of the proposed algorithm from various perspectives and draw relevant conclusions. To be specific, the extensive simulation results show that the low-complexity proposal performance is second only to the exhaustive search method and outweighs the fixed-point iteration baseline. Particularly, the proposed algorithm performs outstandingly in scenario two, demonstrating the superiority of our proposal to mitigate interference in the complicated urban outdoor environment.
2. System Model and Problem Formulation
2.1. System Overview
2.2. Transmission Model
2.2.1. DL Transmission Model
- Scenario one: The IoT devices are relatively open to each other in a local region like a town square, where no barriers are between them.
- Scenario two: The IoT devices are located in a residential area and separated by small-sized obstacles, such as low residences and trees (Though the real situation in smart cities may be a hybrid of scenarios one and two, the research through two typical cases under extreme conditions can well extend to the general situation).
2.2.2. UL Transmission Model
2.2.3. Problem Formulation
3. Solution to SE Maximization Problem in RIS-Aided FD System
3.1. Beamforming Design
Algorithm 1: Proposed SCA Algorithm for Problem |
|
3.2. RIS Phase Shifts Design
3.2.1. Markov Decision Process
- Action: A phase shifts vector is treated as a one-dimensional discrete action, such as an action at time step t defined as
- State: The state vector includes the SINR of each IoT device and is represented as
- Reward: Considering that the state is only dependent on each individual instead of the entirety, we take the reward as a guide of the global policy to the RIS controller. With the aim of the maximum sum SE, we choose a modified objective as a reward.
3.2.2. Mechanism of Soft Actor–Critic Learning
- Implementation: and are derived correspondingly by inputting at the current state . Then, the acquired transition tuple is stored in a replay buffer that gradually enriches with multiple interactions. Notably, for the sake of the agent to explore comprehensively, the replay buffer can be stuffed off-policy.
- Learning: In each time step, a mini-batch containing several transition tuples is randomly sampled from the replay buffer. Then, the learning process in a mini-batch is as follows.
Algorithm 2: Proposed SAC Algorithm for Problem |
|
3.2.3. Proposed Deep Neural Network Design
3.3. Algorithm Development and Computational Complexity
Algorithm 3: Proposed Two-step Algorithm for Problem |
|
4. Performance Evaluation
4.1. Simulation Setup and Parameters Setting
4.2. Optimizer Performance
4.3. Convergence of Algorithm 3
4.4. Impact of the RIS Location
4.5. Impact of the Number of RIS Reflection Elements
4.6. Impact of the Number of Bits
4.7. Impact of the Residual Self-Interference
4.8. Impact of the Transmit Power
4.9. Impact of the Rician Factor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saad, W.; Bennis, M.; Chen, M. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Netw. 2020, 34, 134–142. [Google Scholar] [CrossRef]
- Fernando, X.; Lăzăroiu, G. Spectrum Sensing, Clustering Algorithms, and Energy-Harvesting Technology for Cognitive-Radio-Based Internet-of-Things Networks. Sensors 2023, 23, 7792. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Yu, F.R.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C.M. Enabling Massive IoT Toward 6G: A Comprehensive Survey. IEEE Internet Things J. 2021, 8, 11891–11915. [Google Scholar] [CrossRef]
- Khan, R.; Tsiga, N.; Asif, R. Interference Management with Reflective In-Band Full-Duplex NOMA for Secure 6G Wireless Communication Systems. Sensors 2022, 22, 2508. [Google Scholar] [CrossRef] [PubMed]
- Kolodziej, K.E.; Perry, B.T.; Herd, J.S. In-Band Full-Duplex Technology: Techniques and Systems Survey. IEEE Trans. Microw. Theory Tech. 2019, 67, 3025–3041. [Google Scholar] [CrossRef]
- Smida, B.; Sabharwal, A.; Fodor, G.; Alexandropoulos, G.C.; Suraweera, H.A.; Chae, C.-B. Full-Duplex Wireless for 6G: Progress Brings New Opportunities and Challenges. IEEE J. Sel. Areas Commun. 2023, 41, 2729–2750. [Google Scholar] [CrossRef]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Renzo, M.D.; Debbah, M. Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Selvaraj, M.; Vijay, R.; Anbazhagan, R.; Rengarajan, A. Reconfigurable Metasurface: Enabling Tunable Reflection in 6G Wireless Communications. Sensors 2023, 23, 9166. [Google Scholar] [CrossRef]
- Chen, R.; Liu, M.; Hui, Y.; Cheng, N.; Li, J. Reconfigurable Intelligent Surfaces for 6G IoT Wireless Positioning: A Contemporary Survey. IEEE Internet Things J. 2022, 9, 23570–23582. [Google Scholar] [CrossRef]
- Ashraf, S.; Ahmed, T.; Aslam, Z.; Muhammad, D.; Yahya, A.; Shuaeeb, M. Depuration based Efficient Coverage Mechanism for Wireless Sensor Network. J. Electr. Comput. Eng. Innov. 2020, 8, 145–160. [Google Scholar] [CrossRef]
- Li, J.; Gao, B.; Yu, Z.; Li, C.; Tang, W.; Liang, L.; Li, X.; Jin, S.; Cheng, Q.; Cui, T.J. Coverage Enhancement of 5G Commercial Network based on Reconfigurable Intelligent Surface. In Proceedings of the 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, UK, 26–29 September 2022; IEEE: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Yang, F.; Huang, J.; Bhardwaj, A.; Hussain, A.; El-Latif, A.A.A.; Yu, K. Adaptive Modulation based on Nondata-Aided Error Vector Magnitude for Smart Systems in Smart Cities. IEEE Internet Things J. 2023, 10, 18672–18685. [Google Scholar] [CrossRef]
- Chung, M.; Sim, M.S.; Kim, J.; Kim, D.K.; Chae, C.-b. Prototyping Real-Time Full Duplex Radios. IEEE Commun. Mag. 2015, 53, 56–63. [Google Scholar] [CrossRef]
- Abusabah, A.T.; Irio, L.; Oliveira, R.; Costa, D.B.D. Approximate Distributions of the Residual Self-Interference Power in Multi-tap Full-Duplex Systems. IEEE Wireless Commun. Lett. 2021, 10, 755–759. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Zhou, Y.; Shen, Z.; Li, X. Tightly Coupled Integration of GNSS, INS, and LiDAR for Vehicle Navigation in Urban Environments. IEEE Internet Things J. 2022, 9, 24721–24735. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, S. Joint Subcarrier Assignment and Power Allocation for OFDMA Full Duplex Distributed Antenna Systems. IEEE Trans. Veh. Technol. 2021, 70, 11554–11564. [Google Scholar] [CrossRef]
- Zhu, P.; Sheng, Z.; Bao, J.; Li, J. Antenna Selection for Full-Duplex Distributed Massive MIMO via the Elite Preservation Genetic Algorithm. IEEE Commun. Lett. 2022, 26, 922–926. [Google Scholar] [CrossRef]
- Xia, X.; Zhu, P.; Li, J.; Wu, H.; Wang, D.; Xin, Y. Joint Optimization of Spectral Efficiency for Cell-Free Massive MIMO with Network-Assisted Full Duplexing. Sci. China Inf. Sci. 2021, 64, 1–16. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, D.; Wang, Y.; Kong, C.; Chen, W. Joint Power Control and Passive Beamforming in Reconfigurable Intelligent Surface Assisted User-Centric Networks. IEEE Trans. Commun. 2022, 70, 4852–4866. [Google Scholar] [CrossRef]
- Obeed, M.; Chaaban, A. Joint Beamforming Design for Multiuser MISO Downlink Aided by A Reconfigurable Intelligent Surface and A Relay. IEEE Trans. Wirel. Commun. 2022, 21, 8216–8229. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, Z.; Du, C.; Jiang, Y.; Zhou, B. RIS-Assisted Self-Interference Mitigation for In-Band Full-Duplex Transceivers. IEEE Trans. Commun. 2023, 71, 5444–5454. [Google Scholar] [CrossRef]
- Nguyen, B.C.; Hoang, T.M.; Tran, P.T.; Nguyen, T.N.; Phan, V.-D.; Minh, B.V.; Voznak, M. Cooperative Communications for Improving the Performance of Bidirectional Full-Duplex System with Multiple Reconfigurable Intelligent Surfaces. IEEE Access 2021, 9, 134733–134742. [Google Scholar] [CrossRef]
- Guan, P.; Wang, Y.; Yu, H.; Zhao, Y. Joint Beamforming Optimization for RIS-Aided Full-Duplex Communication. IEEE Wirel. Commun. Lett. 2022, 11, 1629–1633. [Google Scholar] [CrossRef]
- Ku, C.-J.; Shen, L.-H.; Feng, K.-T. Reconfigurable Intelligent Surface Assisted Interference Mitigation for 6G Full-Duplex MIMO Communication Systems. In Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, 12–15 September 2022; IEEE: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Faisal, A.; Al-Nahhal, I.; Dobre, O.A.; Ngatched, T.M.N. Deep Reinforcement Learning for RIS-Assisted FD Systems: Single or Distributed RIS? IEEE Commun. Lett. 2022, 26, 1563–1567. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, Z.; Pan, C.; Li, L.; Swindlehurst, A.L. Multiuser Full-Duplex Two-Way Communications via Intelligent Reflecting Surface. IEEE Trans. Signal Process. 2021, 69, 837–851. [Google Scholar] [CrossRef]
- Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.-C.; Kim, D.I. Applications of Deep Reinforcement Learning in Communications and Networking: A Survey. IEEE Commun. Surveys Tutor. 2019, 21, 3133–3174. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, F.; Wu, Y.; Hu, R.Q.; Wang, Y. Subcarrier Assignment Schemes Based on Q-Learning in Wideband Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2020, 69, 1168–1172. [Google Scholar] [CrossRef]
- Mismar, F.B.; Evans, B.L.; Alkhateeb, A. Deep Reinforcement Learning for 5G Networks: Joint Beamforming, Power Control, and Interference Coordination. IEEE Trans. Commun. 2020, 68, 1581–1592. [Google Scholar] [CrossRef]
- Al-Eryani, Y.; Akrout, M.; Hossain, E. Antenna Clustering for Simultaneous Wireless Information and Power Transfer in A MIMO Full-Duplex System: A Deep Reinforcement Learning-Based Design. IEEE Trans. Commun. 2021, 69, 2331–2345. [Google Scholar] [CrossRef]
- Zhu, Y.; Bo, Z.; Li, M.; Liu, Y.; Liu, Q.; Chang, Z.; Hu, Y. Deep Reinforcement Learning based Joint Active and Passive Beamforming Design for RIS-Assisted MISO Systems. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; IEEE: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Alexandropoulos, G.C.; Stylianopoulos, K.; Huang, C.; Yuen, C.; Bennis, M.; Debbah, M. Pervasive Machine Learning for Smart Radio Environments Enabled by Reconfigurable Intelligent Surfaces. Proc. IEEE 2022, 110, 1494–1525. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- Alghamdi, R.; Alhothali, D.; Almorad, H.; Faisal, A.; Helal, S.; Shalabi, R.; Asfour, R.; Hammad, N.; Shams, A.; Saeed, N.; et al. Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques. IEEE Access 2020, 8, 202795–202818. [Google Scholar] [CrossRef]
- Pradhan, C.; Li, A.; Song, L.; Vucetic, B.; Li, Y. Hybrid Precoding Design for Reconfigurable Intelligent Surface Aided mmWave Communication Systems. IEEE Wirel. Commun. Lett. 2020, 9, 1041–1045. [Google Scholar] [CrossRef]
- Nguyen, D.; Tran, L.-N.; Pirinen, P.; Latva-Aho, M. On the Spectral Efficiency of Full-Duplex Small Cell Wireless Systems. IEEE Trans. Wirel. Commun. 2014, 13, 4896–4910. [Google Scholar] [CrossRef]
- Xiu, Y.; Zhao, J.; Sun, W.; Renzo, M.D.; Gui, G.; Zhang, Z.; Wei, N. Reconfigurable Intelligent Surfaces Aided mmWave NOMA: Joint Power Allocation, Phase Shifts, and Hybrid Beamforming Optimization. IEEE Trans. Wirel. Commun. 2021, 20, 8393–8409. [Google Scholar] [CrossRef]
- Duarte, M.; Dick, C.; Sabharwal, A. Experiment-Driven Characterization of Full-Duplex Wireless Systems. IEEE Trans. Wirel. Commun. 2012, 11, 4296–4307. [Google Scholar] [CrossRef]
- Nguyen, V.-D.; Duong, T.Q.; Tuan, H.D.; Shin, O.-S.; Poor, H.V. Spectral and Energy Efficiencies in Full-Duplex Wireless Information and Power Transfer. IEEE Trans. Commun. 2017, 65, 2220–2233. [Google Scholar] [CrossRef]
- Zappone, A.; Renzo, M.D.; Debbah, M. Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both? IEEE Trans. Commun. 2019, 67, 7331–7376. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Zeng, M.; Saleem, U.; Lu, Z.; Wen, X.; Jin, D.; Han, Z.; Jiang, T.; Li, Y. Reinforcement Learning Meets Wireless Networks: A Layering Perspective. IEEE Internet Things J. 2021, 8, 85–111. [Google Scholar] [CrossRef]
- Faisal, A.; Al-Nahhal, I.; Dobre, O.A.; Ngatched, T.M.N. Deep Reinforcement Learning for Optimizing RIS-Assisted HD-FD Wireless Systems. IEEE Commun. Lett. 2021, 25, 3893–3897. [Google Scholar] [CrossRef]
- Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with A Stochastic Actor. arXiv 2018, arXiv:1801.01290. [Google Scholar] [CrossRef]
- Christodoulou, P. Soft Actor-Critic for Discrete Action Settings. arXiv 2019, arXiv:1910.07207. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Dynamic Programming and Optimal Control; Athena Scientific: Nashua, NH, USA, 2000. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Fujimoto, S.; Hoof, H.V.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018, arXiv:1802.09477. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Nguyen, V.-D.; Dobre, O.A.; Nguyen, D.N.; Dutkiewicz, E.; Shin, O.-S. Joint Power Control and User Association for NOMA-Based Full-Duplex Systems. IEEE Trans. Commun. 2019, 67, 8037–8055. [Google Scholar] [CrossRef]
- Tang, J.; So, D.K.C.; Alsusa, E.; Hamdi, K.A.; Shojaeifard, A.; Wong, K.-K. Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access. IEEE Trans. Veh. Technol. 2018, 67, 2439–2453. [Google Scholar] [CrossRef]
- Guo, H.; Liang, Y.-C.; Chen, J.; Larsson, E.G. Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks. IEEE Trans. Wirel. Commun. 2020, 19, 3064–3076. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Schober, R. MISO Wireless Communication Systems via Intelligent Reflecting Surfaces: (Invited Paper). In Proceedings of the 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 11–13 August 2019; IEEE: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar] [CrossRef]
Abbreviation | Definition | Fundamental Usage (If Any) |
---|---|---|
5G | Fifth generation | |
6G | Sixth generation | |
AWGN | Additive white gaussian noise | |
BS | Base station | |
CSI | Channel state information | |
DL | Downlink | Downlink communication direction |
DRL | Deep reinforcement learning | |
EE | Energy efficiency | |
FD | Full-duplex | |
FDD | Frequency division duplex | |
HD | Half-duplex | |
IoT | Internet of things | |
LI | Loop-interference | Interference caused by the rebounded signal of RIS |
LoS | Line-of-sight | |
MDP | Markov decision process | |
NLoS | None-line-of-sight | |
NN | Neural network | |
QoS | Quality of service | |
RIS | Reconfigurable intelligent surface | |
RL | Reinforcement learning | |
SAC | Soft actor–critic | |
SCA | Successive convex approximation | |
SE | Spectral efficiency | |
SI | Self-interference | Self-interference of FD BS |
SINR | Signal to interference plus noise ratio | |
SOC | Second-order cone | |
TDD | Time division duplex | |
UDI | Uplink to downlink interference | Direct link interference of UL to DL IoT devices |
UL | Uplink | Uplink communication direction |
Description | Simulation Value |
---|---|
Batch size | 256 |
Replay buffer size | 1,000,000 |
Target update interval | 1 |
Discount rate | 0.95 |
Learning rate for critic network | 0.0003 |
Learning rate for actor network | 0.0001 |
Learning rate for temperature | 0.05 |
Soft update | 0.005 |
Optimizer | Adam |
Loss | Mean squared error |
Target entropy | −dim(action) |
Time steps | 40,000 |
Algorithm | Complexity | EE ((bit/Hz)/Joule) |
---|---|---|
Proposed SAC | 16.37 | |
Exhaustive search | 17.68 | |
Fixed-point iteration | 13.84 | |
Random phase shifts | 9.81 | |
Without RIS | 9.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, K.; Zhou, B.; Zhang, W.; Ju, C. Joint Beamforming and Phase Shifts Design for RIS-Aided Multi-User Full-Duplex Systems in Smart Cities. Sensors 2024, 24, 121. https://doi.org/10.3390/s24010121
Pan K, Zhou B, Zhang W, Ju C. Joint Beamforming and Phase Shifts Design for RIS-Aided Multi-User Full-Duplex Systems in Smart Cities. Sensors. 2024; 24(1):121. https://doi.org/10.3390/s24010121
Chicago/Turabian StylePan, Kunbei, Bin Zhou, Wei Zhang, and Cheng Ju. 2024. "Joint Beamforming and Phase Shifts Design for RIS-Aided Multi-User Full-Duplex Systems in Smart Cities" Sensors 24, no. 1: 121. https://doi.org/10.3390/s24010121
APA StylePan, K., Zhou, B., Zhang, W., & Ju, C. (2024). Joint Beamforming and Phase Shifts Design for RIS-Aided Multi-User Full-Duplex Systems in Smart Cities. Sensors, 24(1), 121. https://doi.org/10.3390/s24010121