Attitude Correlated Frames Based Calibration Method for Star Sensors
<p>Schematic diagram of an attitude measurement for the star sensor: (<b>a</b>) inertial celestial sphere coordinates and the coordinate of a star and (<b>b</b>) star sensor coordinates and the projection of a star.</p> "> Figure 2
<p>Relationship between the star <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </semantics></math> and the sensitive matrix term of the (<b>a</b>) principal point and (<b>b</b>) focus length. Different colors represent different values of the partial differential.</p> "> Figure 3
<p>Schematic diagram of the attitude-correlated frames approach.</p> "> Figure 4
<p>Star distribution with the ACF approach.</p> "> Figure 5
<p>Residual error distribution after calibration for the (<b>a</b>) IAICM and (<b>b</b>) ACFCM.</p> "> Figure 6
<p>The star sensor and LGU system in the experiment.</p> "> Figure 7
<p>Star image distribution before and after employing the ACFCM for different groups: (<b>a</b>) star image distribution for a single-star frame; (<b>b</b>) the star image distribution for the first calibration group; (<b>c</b>) the second calibration group; and (<b>d</b>) the third calibration group.</p> ">
Abstract
:1. Introduction
2. Previous Work
2.1. Measurement Model of the Star Sensor
2.2. Attitude-Dependent Calibration Method
2.3. Attitude-Independent Calibration Method
2.4. Analysis of the Sensitive Matrix
3. Attitude-Correlated Frame-Based Calibration Method
3.1. Principle of the ACF Approach
3.2. The Proposed Calibration Method
4. Experiment and Results
4.1. Simulation
4.2. Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liebe, C.C. Accuracy performance of star trackers—A tutorial. IEEE Trans. Arespace Electron. Syst. 2002, 38, 587–599. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, D.; Sun, C.; Dai, D.; Qin, S. Three-axis attitude accuracy of better than 5 arcseconds obtained for the star sensor in a long-term on-ship dynamic experiment. Appl. Opt. 2018, 57, 9589–9595. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Dong, Y.; Wu, Y.; You, Z. Star tracker parametric analysis for autonomous calibration. J. Tsinghua Univ. (Sci. Technol.) 2005, 45, 1484–1488. [Google Scholar]
- Sun, T.; Xing, F.; You, Z. Optical system error analysis and calibration method of high-accuracy star trackers. Sensors 2013, 13, 4598–4623. [Google Scholar] [CrossRef] [PubMed]
- John, E.; Ilija, J.; Brendon, V. Autonomous recalibration of star trackers. IEEE Sens. J. 2018, 18, 7708–7720. [Google Scholar]
- Zhong, H.; Yang, M.; Lu, X. Calibration method of star sensor. Acta Opt. Sin. 2010, 30, 1343–1348. [Google Scholar] [CrossRef]
- Schmidt, U.; Elstner, C.; Michel, K. ASTRO 15 star tracker flight experience and further improvements towards the ASTRO APS star tracker. In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008. [Google Scholar]
- Wang, Z.; Shu, R.; He, Z.; Lu, G.; Wang, J. New method of CCD camera calibration based on collimator. J. Infrared Millim. Waves 2007, 26, 465–468. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, G.; Fan, Q.; Jiang, J.; Li, J. Star sensor calibration based on integrated modelling with intrinsic and extrinsic parameters. Measurement 2014, 55, 117–125. [Google Scholar] [CrossRef]
- Fan, Q.; Li, X.; Zhang, G. Selection of star sensor lens aberration model. Infrared Laser Eng. 2012, 41, 665–670. [Google Scholar]
- Liu, H.; Li, X.; Tan, J.; Yang, J.; Yang, J.; Su, D.; Jia, H. Novel approach for laboratory calibration of star tracker. Opt. Eng. 2010, 49, 073601. [Google Scholar] [CrossRef]
- Ye, T.; Zhang, X.; Ping, S.; Yang, F. A global Optimization algorithm for laboratory star sensors calibration problem. Measurement 2019, 134, 253–265. [Google Scholar] [CrossRef]
- Samman, M.A.; Griffith, T.; Singla, P.; Junkins, J.L. Auto on-orbit calibration of star trackers. In Proceedings of the Core Techniques for Space System Conference, Colorado Springs, CO, USA, 28–30 November 2001. [Google Scholar]
- Griffith, D.T.; Singla, P.; Junkins, J.L. Autonomous on-orbit calibration approaches for star tracker cameras. Adv. Astronaut. Sci. 2002, 112, 39–57. [Google Scholar]
- Singla, P.; Griffith, D.T.; Crassidis, J.L.; Junkins, J.L. Attitude determination and autonomous on-orbit calibration of star tracker for the GIFTS mission. In Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, San Antonio, TX, USA, 27–30 January 2002; Alfriend, K.T., Neta, B., Luu, K., Walker, C.A.H., Eds.; Volume 112. [Google Scholar]
- Pal, M.; Bhat, M.S. Autonomous star camera calibration and spacecraft attitude determination. J. Intell. Robot. Syst. 2014, 79, 323–343. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, G.; Zheng, Y.; Yang, M.; Hao, Y. Star sensor calibration research and development. J. Chang. Univ. Sci. Technol. (Nat. Sci. Ed.) 2010, 33, 8–14. [Google Scholar]
- Wang, M.; Cheng, Y.; Yang, B.; Chen, X. On-orbit calibration approach for star cameras based on the iteration method with variable weights. Appl. Opt. 2015, 54, 6425–6432. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xu, Q.; Han, C.; Zhang, K. An on-obitrbit calibration method of star sensor based on angular distance subtraction. IEEE Photonics J. 2021, 13, 6800213. [Google Scholar] [CrossRef]
- Xiong, K.; Wei, X.; Zhang, G.; Jiang, J. High-accuracy star sensor calibration based on intrinsic and extrinsic parameter decoupling. Opt. Eng. 2015, 54, 034112. [Google Scholar] [CrossRef]
- Xing, F.; Dong, Y.; You, Z. Laboratory calibration of star tracker with brightness independent star identification strategy. Opt. Eng. 2006, 45, 063604. [Google Scholar] [CrossRef]
- Qin, S.; Zhan, D.; Zheng, J.; Wu, W.; Jia, H.; Fu, S.; Ma, L. A Dynamic Attitude Measurement Method of Star Sensor Based on Gyro’s Precise Angular Correlation. U.S. Patent 14/569,209, 2 July 2014. [Google Scholar]
- Ma, L.; Zhan, D.; Jiang, G.; Fu, S.; Jia, H.; Wang, X.; Huang, Z.; Zheng, J.; Hu, F.; Wu, W.; et al. Attitude-correlated frames approach for a star sensor to improve attitude accuracy under highly dynamic conditions. Appl. Opt. 2015, 54, 7559–7566. [Google Scholar] [CrossRef]
- Ma, L.; Li, Q.; Chen, Y.; Xiao, L. Installation matrix calibrtion between star sensor and the laser gyro unit using the equivalent rotation vector transformation. Meas. Sci. Technol. 2023. under review. [Google Scholar]
- Wallace, P.T.; Capitaine, N. Precession-nutation procedures consistent with IAU 2006 resolutions. Astron. Astrophys. 2006, 459, 981–985. [Google Scholar] [CrossRef]
Parameter | /Pixel | /Pixel | f/mm | / | / | / | ||||
---|---|---|---|---|---|---|---|---|---|---|
True value | 5 | −5 | 25.6 | − | 3 | 29 | 170 | |||
Initial value | 0 | 0 | 25.5 | 0 | 0 | 0 | 0 | 0 | 30 | 160 |
Parameter | Noise | f/mm | ||||||
---|---|---|---|---|---|---|---|---|
Average value in Group 1 | 0.0 | 5.00 | −5.00 | 25.6000 | − | |||
Std value in Group 1 | 0.0 | 0.00 | 0.00 | 0.0000 | 0.00 | 0.00 | 0.00 | 0.00 |
Average value in Group 2 | 0.0 | 4.89 | −5.02 | 25.5999 | - | |||
Std value in Group 2 | 0.1 | 1.23 | 1.21 | 0.0013 | ||||
Average value in Group 3 | 0.0 | 4.73 | −5.49 | 25.6002 | ||||
Std value in Group 3 | 0.2 | 3.02 | 2.79 | 0.0026 |
Parameter | Noise | f/mm | ||||||
---|---|---|---|---|---|---|---|---|
Average value in Group 1 | 0.0 | 5.00 | −5.00 | 25.6000 | − | |||
Std value in Group 1 | 0.0 | 0.00 | 0.00 | 0.0000 | 0.00 | 0.00 | 0.00 | 0.00 |
Average value in Group 2 | 0.0 | 5.05 | −4.97 | 25.6000 | ||||
Std value in Group 2 | 0.1 | 0.45 | 0.56 | 0.0007 | ||||
Average value in Group 3 | 0.0 | 5.03 | −4.92 | 25.6002 | − | |||
Std value in Group 3 | 0.2 | 0.99 | 1.12 | 0.0014 |
Parameters | Values | Parameters | Values |
---|---|---|---|
Resolution | 1024 × 1024 | Focus length | 25.6 mm |
FOV | Exposure time | 150 ms | |
Star sensor update frequency | 5 Hz | Gyro sampling frequency | 100 Hz |
Gyro bias | 0.01/h | Random walk noise | 0.003 |
Parameter | f/mm | ||||||
---|---|---|---|---|---|---|---|
Group 1 | −1.41 | 13.20 | 25.6555 | − | − | ||
Group 2 | −10.10 | 17.13 | 25.6453 | − | − | − | |
Group 3 | −5.21 | 14.56 | 25.6495 | − | − | − |
Parameter | f/mm | ||||||
---|---|---|---|---|---|---|---|
Group 1 | −8.26 | 15.52 | 25.6582 | − | − | ||
Group 2 | −7.75 | 16.86 | 25.6464 | − | − | ||
Group 3 | −7.50 | 15.77 | 25.6519 | − | − |
Group | No. 1 | No. 2 | No. 3 |
---|---|---|---|
IAICM | (0.1066, 0.1241) | (0.1206, 0.1319) | (0.1131, 0.1294) |
ACFCM | (0.1082, 0.1228) | (0.1207, 0.1322) | (0.1142, 0.1287) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Xiao, S.; Tang, W.; Luo, X.; Zhang, S. Attitude Correlated Frames Based Calibration Method for Star Sensors. Sensors 2024, 24, 67. https://doi.org/10.3390/s24010067
Ma L, Xiao S, Tang W, Luo X, Zhang S. Attitude Correlated Frames Based Calibration Method for Star Sensors. Sensors. 2024; 24(1):67. https://doi.org/10.3390/s24010067
Chicago/Turabian StyleMa, Liheng, Shenglong Xiao, Wenjun Tang, Xiao Luo, and Su Zhang. 2024. "Attitude Correlated Frames Based Calibration Method for Star Sensors" Sensors 24, no. 1: 67. https://doi.org/10.3390/s24010067
APA StyleMa, L., Xiao, S., Tang, W., Luo, X., & Zhang, S. (2024). Attitude Correlated Frames Based Calibration Method for Star Sensors. Sensors, 24(1), 67. https://doi.org/10.3390/s24010067