Design of the Dual Stone Locating System on an Extracorporeal Shock Wave Lithotriptor
">
">
">
">
">
">
">
">
"> Figure 1
<p>The framework of the dual stone locating system.</p> "> Figure 2
<p>The geometry of the dual stone location apparatus.</p> "> Figure 3
<p>The schematic diagrams of the fluorescent images. On the left, the C-arm is upright; and, on the right, the C-arm rolls at an angle <span class="html-italic">θ</span>.</p> "> Figure 4
<p>The schematic diagram of the stone deviation in the US images.</p> "> Figure 5
<p>The coordinate system of the US probe for stone tracking.</p> "> Figure 6
<p>(<b>a</b>) The phantom with kidney-shaped cavity mounted on the ESWL, and (<b>b</b>) the phantom cap attached with a model stone at the tip.</p> "> Figure 7
<p>The fluorescent images of the phantom (<b>a</b>) before stone location, and (<b>b</b>) after stone location.</p> "> Figure 8
<p>The front (left) and side (right) views of the devices for the <span class="html-italic">in vitro</span> automatic stone tracking experiment.</p> "> Figure 9
<p>The trajectories of the model stone's center in the US images with and without tracking.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. System Framework
2.2. Initial Stone Location by X-Ray
2.3. Stone Tracking by Ultrasound
3. Results and Discussion
4. Conclusions
References
- Chaussy, C.; Brendel, W.; Schmiedt, E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet 1980, 2, 1265–1268. [Google Scholar]
- Sturevant, B. Shock Wave Physics of Lithotriptors. In Smith's Textbook of Endourology; Smith, A.D., Lingeman, J.E., Bagley, D.H., Preminger, G.M., Clayman, R.V., Badlani, G.H., Jordan, G.H., Kavoussi, L.V., Segura, J.W., Eds.; Quality Medical Publishing, Inc: St. Louis, MO, USA, 1996; Volume 1, pp. 529–552. [Google Scholar]
- Alanee, S.; Ugarte, R.; Monga, M. The effectiveness of shock wave lithotripters: A case matched comparison. J. Urol. 2010, 184, 2364–2367. [Google Scholar]
- Nakamura, K.; Tobiume, M.; Narushima, M.; Yoshizawa, T.; Nishikawa, G.; Kato, Y.; Katsuda, R.; Zennami, K.; Aoki, S.; Yamada, Y.; et al. Treatment of upper urinary tract stones with extracorporeal shock wave lithotripsy (ESWL) Sonolith vision. BMC Urol. 2011, 11, 26–30. [Google Scholar]
- Suramo, I.; Paivansalo, M.; Myllyla, V. Cranio-caudal movements of the liver, pancreas and kidneys in respiration. Acta Radiol. 1984, 25, 129–131. [Google Scholar]
- Cleveland, R.O.; Anglade, R.; Babayan, R.K. Effect of stone motion on in vitro comminution efficiency of a Storz Modulith SLX. J. Endourol. 2004, 18, 629–633. [Google Scholar]
- Lingeman, J.E.; Woods, J.; Toth, P.D.; Evan, A.P.; McAteer, J.A. The role of lithotripsy and its side effects. J. Urol. 1989, 141, 793–797. [Google Scholar]
- Kuwahara, M.A.; Kambe, K.; Taguchi, K.; Saito, T.; Shirai, S.; Orikasa, S. Initial experience using a new extracorporeal lithotripter with an anti-misshot control device. J. Lithotr. Stone Dis. 1991, 3, 141–146. [Google Scholar]
- Orkisz, M.; Bourlion, M.; Gimenez, G.; Flam, T.A. Real-time target tracking applied to improve fragmentation of renal stones in extra-corporeal lithotripsy. Machine Vis. Appl. 1999, 11, 138–144. [Google Scholar]
- Chang, C.C.; Liang, S.M.; Pu, Y.R.; Chen, C.H.; Manousakas, I.; Chen, T.S.; Kuo, C.L.; Yu, F.M.; Chu, Z.F. In vitro study of ultrasound based real-time tracking of renal stones for shock wave lithotripsy: Part I. J. Urol. 2001, 166, 28–32. [Google Scholar]
- Chang, C.C.; Manousakas, I.; Pu, Y.R.; Liang, S.M.; Chen, C.H.; Chen, T.S.; Yu, F.M.; Yang, W.H.; Tong, Y.C.; Kuo, C.L. In vitro study of ultrasound-based real-time tracking for renal stones in shock wave lithotripsy: Part II—A simulated animal experiment. J. Urol. 2002, 167, 2594–2597. [Google Scholar]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K.C. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985, 29, 273–285. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pu, Y.-R.; Manousakas, I.; Liang, S.-M.; Chang, C.-C. Design of the Dual Stone Locating System on an Extracorporeal Shock Wave Lithotriptor. Sensors 2013, 13, 1319-1328. https://doi.org/10.3390/s130101319
Pu Y-R, Manousakas I, Liang S-M, Chang C-C. Design of the Dual Stone Locating System on an Extracorporeal Shock Wave Lithotriptor. Sensors. 2013; 13(1):1319-1328. https://doi.org/10.3390/s130101319
Chicago/Turabian StylePu, Yong-Ren, Ioannis Manousakas, Shen-Min Liang, and Chien-Chen Chang. 2013. "Design of the Dual Stone Locating System on an Extracorporeal Shock Wave Lithotriptor" Sensors 13, no. 1: 1319-1328. https://doi.org/10.3390/s130101319
APA StylePu, Y. -R., Manousakas, I., Liang, S. -M., & Chang, C. -C. (2013). Design of the Dual Stone Locating System on an Extracorporeal Shock Wave Lithotriptor. Sensors, 13(1), 1319-1328. https://doi.org/10.3390/s130101319