Comparison of Various Frequency Matching Schemes for Geometric Correction of Geostationary Ocean Color Imager
<p>Geostationary Ocean Color Imager (GOCI) slot arrangement and imaging sequence (Reprinted from [<a href="#B4-sensors-19-05564" class="html-bibr">4</a>]).</p> "> Figure 2
<p>Frequency domain matching process.</p> "> Figure 3
<p>GOCI Level 1A band 8 data.</p> "> Figure 4
<p>Validation points distribution (reprinted from [<a href="#B4-sensors-19-05564" class="html-bibr">4</a>]).</p> "> Figure 5
<p>Overall test procedures.</p> "> Figure 6
<p>Example of setting the matching area (2011.04.05 UTC 03:00 Slot 14,15).</p> "> Figure 7
<p>Final geometric correction process using frequency domain matching.</p> "> Figure 8
<p>Example of Pair A (2011.04.05 Coordinated Universal Time (UTC) 03:00 slots 2–5, slots 8–9).</p> "> Figure 9
<p>Example of the Pair A gradient matrix (2011.04.05 UTC 03:00 Slots 2–5).</p> "> Figure 10
<p>Level 1B image generated by Orientation Correlation (OC) frequency domain matching. ((<b>a</b>)–(<b>c</b>) are the magnified images of some region).</p> "> Figure 11
<p>Comparison of seam lines between slots in each mosaic image (2011.04.05 UTC 03:00).</p> "> Figure 11 Cont.
<p>Comparison of seam lines between slots in each mosaic image (2011.04.05 UTC 03:00).</p> ">
Abstract
:1. Introduction
2. Frequency Domain Matching
3. Data and Test Method
3.1. Experiment Data
3.2. Test Methods
4. Results and Discussion
4.1. Analysis of Frequency Matching Success Rate
4.2. Analysis of Geometric Correction Accuracy of Frequency Matching
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cho, S.; Ahn, Y.H.; Ryu, J.H.; Kang, G.S.; Youn, H.S. Development of Geostationary Ocean Color Imager. Korean J. Remote Sens. 2010, 26, 157–165. [Google Scholar]
- Yang, C.S.; Bae, S.S.; Han, H.J.; Ahn, Y.H.; Ryu, J.H.; Han, T.H.; Yoo, H.R. Introduction of Acquisition System, Processing System and Distributing Service for Geostationary Ocean Color Imager (GOCI) Data. Korean J. Remote Sens. 2010, 26, 263–275. [Google Scholar]
- Yang, C.S.; Song, J.H. Geometric performance evaluation of the Geostationary Ocean Color Imager. Ocean Sci. J. 2012, 47, 235–246. [Google Scholar] [CrossRef]
- Kim, H.-G.; Son, J.-H.; Kim, T. Geometric Correction for the Geostationary Ocean Color Imager from a Combination of Shoreline Matching and Frequency Matching. Sensors 2018, 18, 3599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-G.; Kim, J.-I.; Kim, T. Development of Frequency Domain Matching for Automated Mosaicking of Textureless Images. Korean J. Remote Sens. 2016, 32, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H. Development of Image Mosaicking Method for Feature-Less Images Using Local Frequency Domain Matching. Master’s Thesis, Inha University, Incheon, Korea, 2015. [Google Scholar]
- Kim, J.-I.; Kim, H.-C. Performance Comparison of Matching Cost Functions for High-Quality Sea-Ice Surface Model Generation. Korean J. Remote Sens. 2018, 34, 1251–1260. [Google Scholar]
- Argyriou, V.; Vlachos, T. Using gradient correlation for sub-pixel motion estimation of video sequences. In Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21 May 2004; pp. 329–332. [Google Scholar]
- Fitch, A.J.; Kadyrov, A.; Christmas, W.J.; Kittler, J. Orientation Correlation. In Proceedings of the 13th British Machine Vision Conference, Cardiff, UK, 2–5 September 2002; pp. 133–142. [Google Scholar]
- Mohammad, N.H.; Mohammad, S.U. Accelerating Fast Fourier Transformation for Image Processing using Graphics Processing Unit. J. Emerg. Trends Comput. Inf. Sci. 2011, 2, 367–375. [Google Scholar]
- De Castro, E.; Morandi, C. Registration of Translated and Rotated Images Using Finite Fourier Transforms. IEEE Trans. Pattern Anal. Mach. Intell 1987, PAMI-9, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Foroosh, H.; Zerubia, J.B.; Berthod, M. Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 2002, 11, 188–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heid, T.; Kääb, A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens. Environ. 2012, 118, 339–355. [Google Scholar] [CrossRef]
- Mohammed, N.Z.; Ghazi, A.; Mustafa, H.E. Positional Accuracy Testing of Google Earth. Int. J. Multidiscip. Sci. Eng. 2013, 4, 6–9. [Google Scholar]
Search Range | Phase Correlation | Gradient Correlation | Orientation Correlation |
---|---|---|---|
No. of Inliers/ No. of Outliers (Success Rate) | No. of Inliers/ No. of Outliers (Success Rate) | No. of Inliers/ No. of Outliers (Success Rate) | |
Entire Correlation Map | 213/75 (73.96%) | 247/41 (85.76%) | 250/38 (86.81%) |
Constant Search Radius | 271/17 (94.10%) | 273/15 (94.79%) | 276/12 (95.83%) |
TargetSlot | Ref.Slot | Phase Correlation | Gradient Correlation | Orientation Correlation | |||
---|---|---|---|---|---|---|---|
No. of Inliers | No. of Outliers | No. of Inliers | No. of Outliers | No. of Inliers | No. of Outliers | ||
0 | 1 | 8 | 0 | 8 | 0 | 8 | 0 |
7 | 7 | 1 | 8 | 0 | 8 | 0 | |
1 | 0 | 8 | 0 | 8 | 0 | 8 | 0 |
2 | 6 | 2 | 7 | 1 | 8 | 0 | |
6 | 8 | 0 | 8 | 0 | 8 | 0 | |
2 | 1 | 8 | 0 | 8 | 0 | 8 | 0 |
3 | 8 | 0 | 8 | 0 | 8 | 0 | |
5 | 5 | 3 | 4 | 4 | 5 | 3 | |
3 | 2 | 7 | 1 | 8 | 0 | 8 | 0 |
4 | 8 | 0 | 8 | 0 | 8 | 0 | |
4 | 3 | 8 | 0 | 8 | 0 | 8 | 0 |
5 | 8 | 0 | 8 | 0 | 8 | 0 | |
11 | 7 | 1 | 8 | 0 | 8 | 0 | |
5 | 2 | 2 | 6 | 1 | 7 | 3 | 5 |
4 | 8 | 0 | 8 | 0 | 8 | 0 | |
6 | 8 | 0 | 8 | 0 | 7 | 1 | |
10 | 8 | 0 | 8 | 0 | 8 | 0 | |
6 | 1 | 8 | 0 | 8 | 0 | 8 | 0 |
5 | 8 | 0 | 8 | 0 | 7 | 1 | |
7 | 8 | 0 | 8 | 0 | 8 | 0 | |
9 | 8 | 0 | 8 | 0 | 8 | 0 | |
7 | 0 | 7 | 1 | 8 | 0 | 8 | 0 |
6 | 8 | 0 | 8 | 0 | 8 | 0 | |
8 | 8 | 0 | 8 | 0 | 8 | 0 | |
8 | 7 | 8 | 0 | 8 | 0 | 8 | 0 |
9 | 6 | 2 | 5 | 3 | 6 | 2 | |
15 | 7 | 1 | 8 | 0 | 8 | 0 | |
9 | 6 | 8 | 0 | 8 | 0 | 8 | 0 |
8 | 7 | 1 | 8 | 0 | 8 | 0 | |
10 | 8 | 0 | 8 | 0 | 8 | 0 | |
10 | 5 | 8 | 0 | 8 | 0 | 8 | 0 |
9 | 8 | 0 | 8 | 0 | 8 | 0 | |
11 | 8 | 0 | 8 | 0 | 8 | 0 | |
11 | 4 | 8 | 0 | 8 | 0 | 8 | 0 |
10 | 8 | 0 | 8 | 0 | 8 | 0 | |
15 | 8 | 8 | 0 | 8 | 0 | 8 | 0 |
A. Ocean Area > 95% | 51 | 13 | 50 | 14 | 52 | 12 | |
B. Otherwise | 218 | 6 | 223 | 1 | 224 | 0 | |
Total | 269 | 19 | 273 | 15 | 276 | 12 |
Search Range | Phase Correlation (Only Inliers/ Only outliers) | Gradient Correlation (Only Inliers/ Only outliers) | Orientation Correlation (Only Inliers/ Only outliers) |
---|---|---|---|
Entire Correlation Map | 16.6 pixels (2.6 pixels/56.4 pixels) | 20.4 pixels (2.5 pixels/64.2 pixels) | 23.4 pixels (2.4 pixels/80.8 pixels) |
Constant Search Radius | 3.0 pixels (2.8 pixels/7.8 pixels) | 2.9 pixels (2.6 pixels/7.3 pixels) | 2.8 pixels (2.5 pixels/7.6 pixels) |
Target Slot | Ref. Slot | ISM | ISM2PC | ISM2GC | ISM2OC | PSM | PSM2PC | PSM2GC | PSM2OC |
---|---|---|---|---|---|---|---|---|---|
(Pixels) | (Pixels) | (Pixels) | (Pixels) | (Pixels) | (Pixels) | (Pixels) | (Pixels) | ||
0 | 1 | 37.6 | 2.7 | 2.6 | 2.7 | 5.4 | 5.3 | 4.6 | 4.7 |
7 | 3.4 | 2.5 | 2.5 | 5.4 | 5.0 | 5.0 | |||
1 | 0 | 34.7 | 4.8 | 4.9 | 5.0 | 2.4 | 2.5 | 2.9 | 2.4 |
2 | 3.6 | 2.8 | 3.8 | 2.4 | 2.7 | 2.7 | |||
6 | 1.8 | 1.8 | 1.8 | 2.4 | 1.9 | 2.1 | |||
2 | 1 | 37.3 | 3.2 | 3.0 | 2.9 | 2.2 | 2.1 | 1.8 | 1.8 |
3 | 3.3 | 3.2 | 3.1 | 3.2 | 3.3 | 3.3 | |||
5 | 5.7 | 5.8 | 5.3 | 2.1 | 3.1 | 3.1 | |||
3 | 2 | 34.8 | 4.7 | 4.5 | 4.5 | 1.8 | 1.8 | 2.4 | 2.4 |
4 | 2.0 | 1.6 | 1.6 | 1.8 | 2.7 | 2.7 | |||
4 | 3 | 29.9 | 2.8 | 2.6 | 2.7 | 2.0 | 2.0 | 1.2 | 1.2 |
5 | 1.9 | 1.9 | 1.9 | 2.4 | 2.6 | 2.6 | |||
11 | 3.4 | 2.5 | 2.2 | 2.0 | 2.2 | 2.0 | |||
5 | 2 | 28.2 | 6.0 | 7.0 | 6.8 | 1.6 | 1.6 | 2.3 | 2.3 |
4 | 1.5 | 1.5 | 1.5 | 1.3 | 1.2 | 1.2 | |||
6 | 2.9 | 2.3 | 3.3 | 1.8 | 2.0 | 2.0 | |||
10 | 1.4 | 1.4 | 1.3 | 1.6 | 1.6 | 1.6 | |||
6 | 1 | 30.4 | 3.7 | 3.4 | 3.9 | 1.4 | 1.3 | 1.4 | 1.8 |
5 | 2.5 | 2.9 | 3.3 | 1.8 | 2.0 | 2.0 | |||
7 | 3.0 | 2.7 | 2.8 | 1.3 | 1.2 | 1.0 | |||
9 | 2.0 | 2.0 | 2.0 | 1.4 | 1.5 | 1.5 | |||
7 | 0 | 33.0 | 5.5 | 5.2 | 4.3 | 1.0 | 1.0 | 2.1 | 2.2 |
6 | 1.7 | 1.7 | 1.8 | 1.2 | 1.3 | 1.5 | |||
8 | 3.0 | 3.0 | 3.1 | 1.0 | 2.0 | 2.0 | |||
8 | 7 | 30.1 | 1.9 | 1.8 | 1.8 | 2.2 | 2.2 | 1.9 | 1.9 |
9 | 4.6 | 4.9 | 4.8 | 2.8 | 3.1 | 3.4 | |||
15 | 3.2 | 2.2 | 1.9 | 2.2 | 1.4 | 1.3 | |||
9 | 6 | 27.8 | 1.9 | 2.0 | 2.0 | 1.8 | 1.7 | 1.6 | 1.5 |
8 | 3.1 | 3.3 | 3.0 | 3.3 | 4.0 | 3.9 | |||
10 | 3.3 | 3.3 | 1.2 | 1.8 | 1.2 | 1.7 | |||
10 | 5 | 26.6 | 2.1 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 |
9 | 1.7 | 1.8 | 1.8 | 2.9 | 3.2 | 2.3 | |||
11 | 3.1 | 2.9 | 2.8 | 0.9 | 0.9 | 0.9 | |||
11 | 4 | 26.2 | 2.4 | 1.8 | 1.4 | 2.0 | 2.0 | 2.1 | 2.0 |
10 | 2.4 | 2.4 | 2.4 | 3.7 | 3.7 | 3.7 | |||
15 | 8 | 28.2 | 2.5 | 2.3 | 2.4 | 1.8 | 1.8 | 2.2 | 2.2 |
A. Ocean Area > 95% | - | 4.1 | 4.2 | 4.0 | - | 2.3 | 2.8 | 2.8 | |
B. Otherwise | - | 2.7 | 2.5 | 2.4 | - | 2.1 | 2.1 | 2.1 | |
Total | 31.1 | 3.0 | 2.9 | 2.8 | 2.2 | 2.2 | 2.3 | 2.3 |
Tar. Slot | Ref. Slot | Frequency Domain Matching (pixels) | Precision Sensor Modeling (pixels) | ||
---|---|---|---|---|---|
PC | GC | OC | |||
0 | 1,7 | 2.0 | 1.6 | 1.6 | 5.4 |
1 | 0,2,6 | 2.6 | 2.7 | 2.9 | 2.4 |
2 | 1,3,5 | 2.7 | 2.8 | 2.6 | 2.2 |
3 | 2,4 | 1.9 | 1.9 | 1.9 | 1.8 |
4 | 3,5,11 | 2.0 | 1.8 | 1.6 | 2.0 |
5 | 2,4,6,10 | 2.1 | 2.1 | 2.0 | 1.6 |
6 | 1,5,7,9 | 1.7 | 1.7 | 1.6 | 1.4 |
7 | 0,6,8 | 2.9 | 2.8 | 2.5 | 1.0 |
8 | 7,9,15 | 2.0 | 2.0 | 1.8 | 2.2 |
9 | 6,8,10 | 1.2 | 1.2 | 1.1 | 1.8 |
10 | 5,9,11 | 0.9 | 0.8 | 0.7 | 2.0 |
11 | 4,10 | 2.3 | 2.0 | 1.8 | 2.0 |
15 | 8 | 2.5 | 2.3 | 2.4 | 1.8 |
Average | 2.0 | 2.0 | 1.9 | 2.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.-H.; Kim, H.-G.; Han, H.-J.; Kim, T. Comparison of Various Frequency Matching Schemes for Geometric Correction of Geostationary Ocean Color Imager. Sensors 2019, 19, 5564. https://doi.org/10.3390/s19245564
Son J-H, Kim H-G, Han H-J, Kim T. Comparison of Various Frequency Matching Schemes for Geometric Correction of Geostationary Ocean Color Imager. Sensors. 2019; 19(24):5564. https://doi.org/10.3390/s19245564
Chicago/Turabian StyleSon, Jong-Hwan, Han-Gyeol Kim, Hee-Jeong Han, and Taejung Kim. 2019. "Comparison of Various Frequency Matching Schemes for Geometric Correction of Geostationary Ocean Color Imager" Sensors 19, no. 24: 5564. https://doi.org/10.3390/s19245564
APA StyleSon, J. -H., Kim, H. -G., Han, H. -J., & Kim, T. (2019). Comparison of Various Frequency Matching Schemes for Geometric Correction of Geostationary Ocean Color Imager. Sensors, 19(24), 5564. https://doi.org/10.3390/s19245564