Greener, Energy-Efficient and Sustainable Networks: State-Of-The-Art and New Trends
<p>Estimated: (<b>a</b>) contribution of different industry sectors to global carbon-dioxide equivalent (CO<sub>2e</sub>) reduction by 2030 [<a href="#B1-sensors-19-04864" class="html-bibr">1</a>], (<b>b</b>) information and communications technology (ICT) sector CO<sub>2e</sub> “footprint” contribution and enabled reductions to global CO<sub>2e</sub> emissions expressed in Gt [<a href="#B2-sensors-19-04864" class="html-bibr">2</a>].</p> "> Figure 2
<p>Estimation of (<b>a</b>) costs for the global annual energy consumption of telecommunication networks in period 2011–2025 [<a href="#B2-sensors-19-04864" class="html-bibr">2</a>], (<b>b</b>) expected total annual energy consumption per different ICT systems in period 2010–2030 [<a href="#B10-sensors-19-04864" class="html-bibr">10</a>].</p> "> Figure 3
<p>Estimations of energy consumption of all connected user-related devices and equipment for the period 2011–2025 [<a href="#B3-sensors-19-04864" class="html-bibr">3</a>].</p> "> Figure 4
<p>Estimated network energy consumption for main communication sectors in: (<b>a</b>) 2013 and (<b>b</b>) 2025 [<a href="#B3-sensors-19-04864" class="html-bibr">3</a>].</p> "> Figure 5
<p>Techniques for energy-efficiency improvement of radio access networks.</p> "> Figure 6
<p>Techniques for energy-efficiency improvement of data centres.</p> ">
Abstract
:1. Introduction
2. Energy Consumption of User-Related Devices
Energy Consumption Trends
3. Research Challenges for Energy-Efficiency Improvements of Radio Access Networks
3.1. Ultra-Dense Heterogeneous Networks
3.2. Massive-MIMO Technology
3.3. Millimetre-Wave Communications
3.4. Renewable Energy Sources
3.5. Device-To-Device Communications
3.6. Long-Term Evolution Coexistence with Other Systems in Unlicensed Spectrum
3.7. Energy Harvesting
4. Research Challenges for Improvements of Data Centres Energy-Efficiency
4.1. DC Resource Management
4.2. DC Servers Power Management
4.2.1. Dynamic Frequency and Voltage Scaling
4.2.2. On/Off Server and Component Switching
4.2.3. Hybrid DFVS and On/Off Server Switching
4.3. DC Simulation and Monitoring Management
4.4. DC Thermal Management
5. A Review of Articles for Special Issue on Green, Energy-Efficient and Sustainable Networks
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, J.; Guo, S.; Huang, H.; Liu, W.; Xiang, Y. Information and Communications Technologies for Sustainable Development Goals: State-of-the-Art, Needs and Perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 2389–2406. [Google Scholar] [CrossRef] [Green Version]
- Global e-Sustainability Initiative (GeSI). SMARTer2030 Rapport—ICT Solutions for 21st Century Challenges; GeSI: Brussels, Belgium, 2015; pp. 1–134. [Google Scholar]
- Weldon, M.K. The Future X Network: A Bell Labs Perspective; CRC Press, Taylor and Francis Group: Boca Raton, FA, USA, 2016; pp. 1–480. ISBN 149877914X. [Google Scholar]
- NTT Com Global Watch vol.2. Available online: https://www.ntt.com/en/resources/articles/global-watch-vol2.html (accessed on 22 October 2019).
- Cisco Visual Networking Index: Forecast and Trends; 2017–2022 White Paper ©; Cisco Systems Inc.: San Jose, CA, USA, 2019.
- Intelligent Energy. The True Cost of Providing Energy to Telecom Towers in India, White Paper; Intelligent Energy: Loughborough, UK, 2012. [Google Scholar]
- GSMA. Greening Telecoms: Pakistan and Aghanistan Market Analysis, Green Power for Mobile; GSMA: London, UK, 2013. [Google Scholar]
- Profitability of the Mobile Business Model … The Rise! & Inevitable Fall? Techneconomy Blog. 2014. Available online: http://techneconomyblog.com/2014/07/21/profitability-of-the-mobile-business-model (accessed on 22 October 2019).
- Le Maistre, R. Energy Bill Shocks Orange Into Action, Light Reading. 2014. Available online: http://www.lightreading.com/energy-efficiency/energy-bill-shocks-orange-into-action/d/d-id/711038 (accessed on 22 October 2019).
- Andrae, A.S.G.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Chall. J. 2015, 6, 117–157. [Google Scholar] [CrossRef] [Green Version]
- Lambert, S.; Van Heddeghem, W.; Vereecken, W.; Lannoo, B.; Colle, D.; Pickavet, M. Worldwide Electricity Consumption of Communication Networks; Optical Society of America: Washington, DC, USA, 2013. [Google Scholar]
- Wu, Q.; Li, G.Y.; Chen, W.; Ng, D.W.K.; Schober, R. An Overview of Sustainable Green 5G Networks. IEEE Wirel. Commun. 2017, 24, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Lorincz, J.; Matijevic, T. Energy-efficiency analyses of heterogeneous macro and micro base station sites. Comput. Electr. Eng. 2014, 40, 330–349. [Google Scholar] [CrossRef]
- Samarakoon, S.; Bennis, M.; Saad, W.; Debbah, M.; Latva-Aho, M. Ultra Dense Small Cell Networks: Turning Density Into Energy Efficiency. IEEE J. Sel. Areas Commun. 2016, 34, 1267–1280. [Google Scholar] [CrossRef]
- Bjornson, E.; Sanguinetti, L.; Hoydis, J.; Debbah, M. Optimal Design of Energy-Efficient Multi-User MIMO Systems: Is Massive MIMO the Answer? IEEE Trans. Wirel. Commun. 2015, 14, 3059–3075. [Google Scholar] [CrossRef] [Green Version]
- The Balance between 5G Profit and Power. Available online: https://www.datacenterdynamics.com/analysis/balance-between-5g-profit-and-power/ (accessed on 20 October 2019).
- Lorincz, J.; Capone, A.; Begusic, D. Heuristic Algorithms for Optimization of Energy Consumption in Wireless Access Networks. KSII Trans. Internet Inf. Syst. 2011, 5, 626–648. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, J.; Zhou, S.; Niu, Z. How Many Small Cells Can Be Turned off via Vertical Offloading under a Separation Architecture? IEEE Trans. Wirel. Commun. 2015, 14, 1. [Google Scholar] [CrossRef]
- Lorincz, J.; Matijevic, T.; Petrovic, G. On interdependence among transmit and consumed power of macro base station technologies. Comput. Commun. 2014, 50, 10–28. [Google Scholar] [CrossRef]
- Cai, S.; Che, Y.; Duan, L.; Wang, J.; Zhou, S.; Zhang, R. Green 5G Heterogeneous Networks Through Dynamic Small-Cell Operation. IEEE J. Sel. Areas Commun. 2016, 34, 1103–1115. [Google Scholar] [CrossRef]
- Jones, D. Power Consumption: 5G Basestations Are Hungry, Hungry Hippos. Available online: https://www.lightreading.com/mobile/5g/power-consumption-5g-basestations-are-hungry-hungry-hippos/d/d-id/749979 (accessed on 20 October 2019).
- Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems. IEEE Trans. Commun. 2013, 61, 1436–1449. [Google Scholar]
- Han, S.; Chih-Lin, I.; Xu, Z.; Rowell, C. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 2015, 53, 186–194. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R. Millimeter Wave MIMO with Lens Antenna Array: A New Path Division Multiplexing Paradigm. IEEE Trans. Commun. 2016, 64, 1557–1571. [Google Scholar] [CrossRef]
- Lorincz, J.; Bule, I. Renewable Energy Sources for Power Supply of Base Station Sites. Int. J. Bus. Data Commun. Netw. 2013, 9, 53–74. [Google Scholar] [CrossRef] [Green Version]
- Lorincz, J.; Bule, I.; Kapov, M. Performance Analyses of Renewable and Fuel Power Supply Systems for Different Base Station Sites. Energies 2014, 7, 7816–7846. [Google Scholar] [CrossRef] [Green Version]
- Gunduz, D.; Stamatiou, K.; Michelusi, N.; Zorzi, M. Designing intelligent energy harvesting communication systems. IEEE Commun. Mag. 2014, 52, 210–216. [Google Scholar] [CrossRef]
- Feng, D.; Lu, L.; Yuan-Wu, Y.; Li, G.Y.; Feng, G.; Li, S. Device-to-Device Communications Underlaying Cellular Networks. IEEE Trans. Commun. 2013, 61, 3541–3551. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, M.; Cai, L.X.; Zheng, Z.; Shen, X.; Xie, L.-L. LTE-unlicensed: The future of spectrum aggregation for cellular networks. IEEE Wirel. Commun. 2015, 22, 150–159. [Google Scholar] [CrossRef]
- Bi, S.; Ho, C.K.; Zhang, R. Wireless powered communication: Opportunities and challenges. IEEE Commun. Mag. 2015, 53, 117–125. [Google Scholar] [CrossRef]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks with RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2015, 17, 757–789. [Google Scholar] [CrossRef]
- Patel-Predd, P. Update: Energy-efficient Ethernet. IEEE Spectr. 2008, 45, 13. [Google Scholar] [CrossRef]
- Greenberg, A.; Hamilton, J.; Maltz, D.A.; Patel, P. The cost of a cloud: Research problems in data center networks. ACM SIGCOMM Comput Commun. Rev. 2009, 39, 68–73. [Google Scholar] [CrossRef]
- Carrega, A.; Singh, S.; Bruschi, R.; Bolla, R. Traffic merging for energy-efficient datacenter networks. In Proceedings of the SPECTS’12, Genoa, Italy, 8–11 July 2012; pp. 1–5. [Google Scholar]
- Barroso, L.A.; Clidaras, J.; Holzle, U. The Data Center as a Computer: An Introduction to the Design of Warehouse-Scale Machines; Morgan & Claypool publish: San Rafael, CA, USA, 2013. [Google Scholar]
- Benson, T.; Akella, A.; Maltz, D. Network traffic characteristics of data centers in the wild. In Proceedings of the IMC’10, Melbourne, Australia, 1–3 November 2010; pp. 267–280. [Google Scholar]
- Abts, D.; Marty, M.; Wells, P.; Klausler, P.; Liu, H. Energy proportional datacenter networks. In Proceedings of the ISCA’10, Saint-Malo, France, 19–23 June 2010; pp. 338–347. [Google Scholar]
- Wu, J.; Guo, S.; Li, J.; Zeng, D. Big Data Meet Green Challenges: Greening Big Data. IEEE Syst. J. 2016, 10, 873–887. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, F.; Vasilakos, A.V.; Liu, Z. Green Data Centers: A Survey, Perspectives, and Future Directions. arXiv 2016, arXiv:1608.00687, pp. 1–20, 1–20. [Google Scholar]
- Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer, R.; Pratt, I.; Warfield, A. Xen and the art of virtualization. In Proceedings of the SOSP’03, New York, NY, USA, 19–22 October 2003; pp. 164–177. [Google Scholar]
- Stolyar, A.L.; Zhong, Y.A. Large-scale service system with packing constraints: Minimizing the number of occupied servers. In ACM SIGMETRICS Performance Evaluation Review; ACM: New York, NY, USA, 2013; pp. 41–52. [Google Scholar]
- Raghavendra, R.; Ranganathan, P.; Talwar, V.; Wang, Z.; Zhu, X. No “power” struggles: Coordinated multi-level power management for the data center. In Proceedings of the ASPLOS’08, Seattle, WA, USA, 1–5 March 2008; pp. 48–59. [Google Scholar]
- Nathuji, R.; Schwan, K. Virtual Power: Coordinated power management in virtualized enterprise systems. In Proceedings of the SOSP’07, Stevenson, WA, USA, 14–17 October 2007; pp. 265–278. [Google Scholar]
- Bobroff, N.; Kochut, A.; Beaty, K. Dynamic placement of virtual machines for managing SLA violations. Available online: https://pdfs.semanticscholar.org/59ab/46bfd59cb43876e701389f256b93430e6273.pdf (accessed on 20 October 2019).
- Beloglazov, A.; Buyya, R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurr. Comput. Pract. Exp. 2011, 24, 1397–1420. [Google Scholar] [CrossRef]
- Wood, T.; Shenoy, P.; Venkataramani, A.; Yousif, M. Blackbox and gray-box strategies for virtual machine migration 2007. In Proceedings of the NSDI’07, Cambridge, MA, USA, 11–13 April 2007; pp. 229–242. [Google Scholar]
- Van, H.N.; Tran, F.D.; Menaud, J.M. SLA-aware virtual resource management for cloud infrastructures. In Proceedings of the CIT’09, Xiamen, China, 11–14 October 2009; pp. 357–362. [Google Scholar]
- Kusic, D.; Kephart, J.O.; Hanson, J.E.; Kandasamy, N.; Jiang, G. Power and performance management of virtualized computing environments via lookahead control. J. Clust. Comput. 2009, 12, 1–15. [Google Scholar] [CrossRef]
- Hermenier, F.; Lorca, X.; Menaud, J.M.; Muller, G.; Lawall, J. Entropy: A consolidation manager for clusters. In Proceedings of the VEE’09, Washington, DC, USA, 11–13 March 2009; pp. 41–50. [Google Scholar]
- Wang, M.; Meng, X.; Zhang, L. Consolidating virtual machines with dynamic bandwidth demand in data centers. In Proceedings of the INFOCOM’11, Shanghai, China, 11–15 April 2011; pp. 71–75. [Google Scholar]
- Mahadevan, P.; Banerjee, S.; Sharma, P.; Shah, A.; Ranganathan, P. On energy efficiency for enterprise and data center networks. IEEE Commun. Mag. 2011, 49, 94–100. [Google Scholar] [CrossRef]
- Zheng, K.; Wang, X.; Li, L.; Wang, X. Joint power optimization of data center network and servers with correlation analysis. In Proceedings of the INFOCOM’14, Toronto, Canada, 27 April–2 May 2014; pp. 2598–2606. [Google Scholar]
- McGeer, R.; Mahadevan, P.; Banerjee, S. On the complexity of power minimization schemes in data center networks. In Proceedings of the Globecom’10, Miami, FL, USA, 6–10 December 2010; pp. 1–5. [Google Scholar]
- Jiang, J.; Lan, T.; Ha, S.; Chen, M.; Chiang, M. Joint VM placement and routing for data center traffic engineering. In Proceedings of the INFOCOM’12, Orlando, FL, USA, 25–30 March 2012; pp. 2876–2880. [Google Scholar]
- Xu, M.; Shang, Y.; Li, D.; Wang, X. Greening data center networks with throughput-guaranteed power-aware routing. Comput. Netw. 2013, 57, 2880–2899. [Google Scholar] [CrossRef]
- Wang, X.; Yao, Y.; Wang, X.; Lu, K.; Cao, Q. CARPO: Correlation-aware power optimization in data center networks. In Proceedings of the INFOCOM’12, Orlando, FL, USA, 25–30 March 2012; pp. 1125–1133. [Google Scholar]
- Wang, L.; Zhang, F.; Aroca, J.A.; Vasilakos, A.V.; Zheng, K.; Hou, C.; Li, D.; Liu, Z. GreenDCN: A general framework for achieving energy efficiency in data center networks. IEEE J. Sel. Areas Commun. 2014, 32, 4–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Ansari, N. HERO: Hierarchical energy optimization for data center networks. In Proceedings of the ICC’12, Ottawa, ON, Canada, 10–15 June 2012; pp. 2924–2928. [Google Scholar]
- Jin, H.; Cheocherngngarn, T.; Levy, D.; Smith, A.; Pan, D.; Liu, J.; Pissinou, N. Joint host-network optimization for energy-efficient data center networking. In Proceedings of the IPDPS’13, Boston, MA, USA, 24 May 2013; pp. 623–634. [Google Scholar]
- Vasic, N.; Bhurat, P.; Novakovic, D.; Canini, M.; Shekhar, S.; Kostic, D. Identifying and using energy-critical paths. In Proceedings of the CoNEXT’11, Tokyo, Japan, 6–9 December 2011. No. 18. [Google Scholar]
- Benson, T.; Akella, A.; Shaikh, A.; Sahu, S. CloudNaaS: A cloud networking platform for enterprise applications. In Proceedings of the SOCC’11, Cascais, Portugal, 26–28 October 2011; No. 8. pp. 1–13. [Google Scholar]
- Meisner, D.; Gold, B.T.; Wenisch, T.F. PowerNap: Eliminating server idle power. In Proceedings of the ASPLOS’09, Washington, DC, USA, 7–11 March 2009; pp. 205–216. [Google Scholar]
- Pelley, S.; Meisner, D.; Zandevakili, P.; Wenisch, T.F.; Underwood, J. Power routing: Dynamic power provisioning in the dana center. In Proceedings of the ASPLOS’10, Pittsburgh, PA, USA, 13–17 March 2010; pp. 231–242. [Google Scholar]
- Govindan, S.; Sivasubramaniam, A.; Urgaonkar, B. Benefits and limitations of trapping into stored energy for datacenters. In Proceedings of the ISCA’11, San Jose, CA, USA, 4–8 June 2011; pp. 341–352. [Google Scholar]
- Lim, H.; Kansal, A.; Liu, J. Power budgeting for virtualized data centers. In Proceedings of the USENIX ATC’11, Portland, OR, USA, 14–17 June 2011; pp. 1–14. [Google Scholar]
- Al-Hazemi, F.; Lorincz, J.; Mohammed, A.F.Y. Minimizing Data Center Uninterruptable Power Supply Overload by Server Power Capping. IEEE Commun. Lett. 2019, 23, 1342–1346. [Google Scholar] [CrossRef]
- Kontorinis, V.; Zhang, L.E.; Aksanli, B.; Sampson, J.; Homayoun, H.; Pettis, E.; Tullsen, D.M.; Rosing, T. Šimunić Managing distributed ups energy for effective power capping in data centers. ACM SIGARCH Comput. Arch. News 2012, 40, 488. [Google Scholar] [CrossRef]
- Fan, X.; Weber, W.-D.; Barroso, L.A. Power provisioning for a warehouse-sized computer. In Proceedings of the ISCA’07, San Diego, CA, USA, 9–13 June 2007; pp. 13–23. [Google Scholar]
- Govindan, S.; Wang, D.; Sivasubramaniam, A.; Urgaonkar, B. Leveraging stored energy for handling power emergencies in aggressively provisioned datacenters. In Proceedings of the ASPLOS’12, London, UK, 3–7 March 2012; pp. 75–86. [Google Scholar]
- Al-Hazemi, F.; Peng, Y.; Youn, C.-H.; Lorincz, J.; Li, C.; Song, G.; Boutaba, R. Dynamic allocation of power delivery paths in consolidated data centers based on adaptive UPS switching. Comput. Netw. 2018, 144, 254–270. [Google Scholar] [CrossRef]
- AL-Hazemi, F.; Lorincz, J.; Mohammed, A.F.Y.; Salamh, F. Reducing Data Center Power Losses through UPS Serial Consolidation. In Proceedings of the SoftCOM 2019, Split, Croatia, 19–21 September 2019; pp. 1–6. [Google Scholar]
- Gupta, P. Google to use wind energy to power data centers. Reuters. 2010. Available online: https://www.reuters.com/article/us-google-windpower/google-to-use-wind-energy-to-power-data-centers-idUSTRE66J3BL20100720 (accessed on 22 October 2019).
- Sharma, N.; Barker, S.; Irwin, D.; Shenoy, P. Blink: Managing server clusters on intermittent power. In Proceedings of the ASP-LOS’11, Newport Beach, CA, USA, 5–11 March 2011; pp. 185–198. [Google Scholar]
- Li, C.; Zhou, R.; Li, T. Enabling distributed generation powered sustainable high-performance data center. In Proceedings of the HPCA’13, Shenzhen, China, 23–27 February 2013; pp. 35–46. [Google Scholar]
- Akoush, S.; Sohan, R.; Rice, A.; Moore, A.W.; Hopper, A. Free lunch: Exploiting renewable energy for computing. In Proceedings of the HotOS’11, Napa, CA, USA, 9–11 May 2011; pp. 1–5. [Google Scholar]
- Goiri, I.; Le, K.; Nguyen, T.D.; Guitart, J.; Torres, J.; Bianchini, R. GreenHadoop: Leveraging green energy in data-processing frameworks. In Proceedings of the EuroSys’12, Bern, Switzerland, 10–13 April 2012; pp. 57–70. [Google Scholar]
- Goiri, I.; Le, K.; Haque, M.E.; Beauchea, R.; Nguyen, T.D.; Guitart, J.; Torres, J.; Bianchini, R. GreenSlot: Scheduling energy consumption in green datacenters. In Proceedings of the SC’11, Seatle, WA, USA, 16 September 2011; pp. 1–11. [Google Scholar]
- Gao, P.X.; Curtis, A.R.; Wong, B.; Keshav, S. It’s not easy being green. In Proceedings of the SIGCOMM’12, Helsinki, Finland, 13–14 August 2012; pp. 211–222. [Google Scholar]
- Gao, Y.; Zeng, Z.; Liu, X.; Kumar, P.R. The answer is blowing in the wind: Analysis of powering Internet data centers with wind energy. In Proceedings of the INFOCOM’13, Turin, Italy, 14–19 April 2013; pp. 520–524. [Google Scholar]
- Liu, Z.; Lin, M.; Wierman, A.; Low, S.H.; Andrew, L.L.H. Greening geographical load balancing. In Proceedings of the SIGMETRICS’11, San Jose, CA, USA, 7–11 June 2011; pp. 233–244. [Google Scholar]
- Zhang, Y.; Wang, Y.; Wang, X. GreenWare: Greening cloudscale data centers to maximize the use of renewable energy. In Proceedings of the Middleware’11, Lisbon, Portugal, 12–16 December 2011; pp. 143–164. [Google Scholar]
- Albers, S.; Fujiwara, H. Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms 2007, 3, 1–13. [Google Scholar] [CrossRef]
- Pruhs, K.; Stee, R.V.; Uthaisombut, P. Speed scaling of tasks with precedence constraints. Theory Comput. Syst. 2008, 43, 67–80. [Google Scholar] [CrossRef]
- Bunde, D.P. Power-aware scheduling for makespan and flow. J. Sched. 2009, 12, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Bansal, N.; Kimbrel, T.; Pruhs, K. Speed scaling to manage energy and temperature. J. ACM 2007, 54, 11–39. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, F.; Song, Y.; Fan, L.; Liu, Z. Energy-efficient scheduling with time and processors eligibility restrictions. In Proceedings of the EuroPar’13, Aachen, Germany, 26–30 August 2013; pp. 66–77. [Google Scholar]
- Greiner, G.; Nonner, T.; Souza, A. The bell is ringing in speed scaled multiprocessor scheduling. In Proceedings of the SPAA’09, Calgary, AB, Canada, 11–13 August 2009; pp. 11–18. [Google Scholar]
- Albers, S.; Muller, F.; Schmelzer, S. Speed scaling on parallel processors. In Proceedings of the SPAA’07, San Diego, CA, USA, 9–11 June 2007; pp. 289–298. [Google Scholar]
- Gunaratne, C.; Christensen, K.; Nordman, B.; Suen, S. Reducing the energy consumption of ethernet with adaptive link rate (ALR). IEEE Trans. Comput. 2008, 57, 448–461. [Google Scholar] [CrossRef]
- Andrews, M.; Anta, A.F.; Zhang, L.; Zhao, W. Routing for power minimization in the speed scaling model. IEEE/ACM Trans. Netw. 2012, 20, 285–294. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, F.; Liu, Z. Discrete Min-Energy Scheduling on Restricted Parallel Processors. In Proceedings of the IPDPS’13, Cambridge, MA, USA, 20–24 May 2013; pp. 2226–2229. [Google Scholar]
- Antoniadis, A.; Huang, C.C. Non-preemptive speed scaling. Scheduling 2013, 16, 385–394. [Google Scholar] [CrossRef]
- Bampis, E.; Kononov, A.; Letsios, D.; Lucarelli, G.; Nemparis, I. From preemptive to non-preemptive speed-scaling scheduling. Discret. Appl. Math. 2015, 181, 11–20. [Google Scholar] [CrossRef]
- Gandhi, A.; Harchol-Balter, M.; Das, R.; Lefurgy, C. Optimal power allocation in server farms. In Proceedings of the SIGMET- RICS’09, Seattle, WA, USA, 15–19 June 2009; pp. 157–168. [Google Scholar]
- Wierman, A.; Andrew, L.L.; Tang, A. Power-aware speed scaling in processor sharing systems. In Proceedings of the INFOCOM’09, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 2007–2015. [Google Scholar]
- Liu, F.; Zhou, Z.; Jin, H.; Li, B.; Li, B.; Jiang, H. On Arbitrating the Power-Performance Tradeoff in SaaS Clouds. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2648–2658. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Hou, C.; Aroca, J.A.; Liu, Z. Incorporating rate adaptation into green networking for future data centers. In Proceedings of the NCA’13, Cambridge, MA, USA, 22–24 August 2013; pp. 106–109. [Google Scholar]
- Karlin, A.R.; Manasse, M.S.; McGeoch, L.A.; Owicki, S. Competitive randomized algorithms for nonuniform problems. Algorithmica 1994, 11, 542–571. [Google Scholar] [CrossRef]
- Irani, S.; Shukla, S.; Gupta, R. Online strategies for dynamic power management in systems with multiple power-saving states. ACM Trans. Embed. Comput. Syst. 2003, 2, 325–346. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-J.; Kao, M.-J.; Lee, D.T.; Rutter, I.; Wagner, D. Online dynamic power management with hard real-time guarantees. Theor. Comput. Sci. 2015, 594, 46–64. [Google Scholar] [CrossRef]
- Augustine, J.; Irani, S.; Swamy, C. Optimal power-down strategies. SIAM J. Comput. 2008, 37, 1499–1516. [Google Scholar] [CrossRef]
- Angel, E.; Bampis, E.; Chau, V. Low complexity scheduling algorithms minimizing the energy for tasks with agreeable deadlines. Discret. Appl. Math. 2014, 175, 1–10. [Google Scholar] [CrossRef]
- Demaine, E.D.; Ghodsi, M.; Hajiaghayi, M.T.; Sayedi-Roshkhar, A.S.; Zadimoghaddam, M. Scheduling to minimize gaps and power consumption. Scheduling 2013, 16, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Wierman, A.; Andrew, L.; Thereska, E. Dynamic right-sizing for power-proportional data centers. In Proceedings of the INFOCOM’11, Shanghai, China, 10–15 April 2011; pp. 1098–1106. [Google Scholar]
- Azar, Y.; Ben-Aroya, N.; Devanur, N.R.; Jain, N. Cloud scheduling with setup cost. In Proceedings of the SPAA’13, Montréal, QC, Canada, 23–25 July 2013; pp. 298–304. [Google Scholar]
- Andrews, M.; Anta, A.F.; Zhang, L.; Zhao, W. Routing and scheduling for energy and delay minimization in the powerdown model. In Proceedings of the INFOCOM’10, San Diego, CA, USA, 14–19 March 2010; pp. 21–25. [Google Scholar]
- Zhang, M.; Yi, C.; Liu, B.; Zhang, B. GreenTE: Power-aware traffic engineering. In Proceedings of the ICNP’10, Kyoto, Japan, 5–8 October 2010; pp. 21–30. [Google Scholar]
- Heller, B.; Seetharaman, S.; Mahadevan, P.; Yiakoumis, Y.; Sharma, P.; Banerjee, S.; McKeown, N. ElasticTree: Saving energy in data center networks. In Proceedings of the NSDI’10, San Jose, CA, USA, 28–30 April 2010; pp. 249–264. [Google Scholar]
- Bolla, R.; Bruschi, R.; Cianfrani, A.; Listanti, M. Enabling backbone networks to sleep. IEEE Netw. 2011, 25, 26–31. [Google Scholar] [CrossRef]
- Irani, S.; Shukla, S.; Gupta, R. Algorithms for power savings. ACM Trans. Algorithms 2007, 3, 41. [Google Scholar] [CrossRef]
- Adams, W.M. Power Consumption in Data Centers Is a Global Problem. Available online: https://www.datacenterdynamics.com/opinions/power-consumption-data-centers-global-problem/ (accessed on 21 October 2019).
- Antoniadis, A.; Huang, C.-C.; Ott, S. A fully polynomialtime approximation scheme for speed scaling with sleep state. arXiv 2014, arXiv:1407.0892. [Google Scholar]
- Albers, S.; Antoniadis, A. Race to idle: New algorithms for speed scaling with a sleep state. ACM Trans. Algorithms 2014, 10, 1266–1285. [Google Scholar] [CrossRef]
- Han, X.; Lam, T.-W.; Lee, L.-K.; To, I.K.K.; Wong, P.W.H. Deadline scheduling and power management for speed bounded processors. Theor. Comput. Sci. 2010, 411, 3587–3600. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Das, A.; Qin, W.; Sivasubramaniam, A.; Wang, Q.; Gautam, N. Managing server energy and operation costs in hosting centers. In Proceedings of the SIGMETRICS’05, Banff, AB, Canada, 6–10 June 2005; pp. 303–314. [Google Scholar]
- Yao, Y.; Huang, L.; Sharma, A.B.; Golubchik, L.; Neely, M.J. Data centers power reduction: A two time scale approach for delay tolerant workloads. In Proceedings of the INFOCOM’12, Orlando, FL, USA, 25–30 March 2012; pp. 1431–1439. [Google Scholar]
- Nedevschi, S.; Popa, L.; Iannaccone, G.; Ratnasamy, S.; Wetherall, D. Reducing network energy consumption via sleeping and rate-adaptation. In Proceedings of the NSDI’08, San Francisco, CA, USA, 16–18 April 2008; pp. 323–336. [Google Scholar]
- Vasic, N.; Kostic, D. Energy-aware traffic engineering. In Proceedings of the e-Energy’10, Passau, Germany, 13–15 April 2010; pp. 169–178. [Google Scholar]
- Liu, L.; Wang, H.; Liu, X.; Jin, X.; He, W.; Wang, Q.; Chen, Y. GreenCloud: A new architecture for green data center. In Proceedings of the ICAC-INDST’09, Barcelona, Spain, 15 June 2009; pp. 29–38. [Google Scholar]
- Lu, G.; Zhang, J.; Wang, H.; Yuan, L.; Weng, C. PowerTracer: Tracing requests in multi-tier services to diagnose energy inefficiency. In Proceedings of the ICAC’12, San Jose, CA, USA, 18–20 September 2012; pp. 97–102. [Google Scholar]
- Yeo, S.; Li, H.-H.S. SimWare: A holistic warehouse-scale computer simulator. Computer 2012, 45, 48–55. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gilbert, R.R.; Banerjee, A.; Abbasi, Z.; Mukherjee, T.; Varsamopoulos, G. GDCSim: A tool for analyzing green data center design and resource management techniques. In Proceedings of the IGCC’11, Orlando, FL, USA, 25–28 July 2011; pp. 1–8. [Google Scholar]
- Kliazovich, D.; Bouvry, P.; Audzevich, Y.; Khan, S.U. Green-Cloud: A packet-level simulator of energy-aware cloud computing data centers. In Proceedings of the Globecom’10, Miami, FL, USA, 6–10 December 2010; pp. 1–5. [Google Scholar]
- Julia, F.; Roldan, J.; Nou, R.; Fito, J.O.; Vaque, A.; Goiri, I.; Berral, J.L. EEFSim: Energy Efficiency Simulator. Research Report: UPC-DAC-RR-CAP-2010-15. 2010. Available online: https://www.ac.upc.edu/app/research-reports/html/2010/19/eefsimtr.pdf (accessed on 22 October 2019).
- Patel, C.D.; Bash, C.E.; Sharma, R.; Beitelma, M. Smart cooling of data centers. In Proceedings of the IPACK’03, Maui, HI, USA, 6–11 July 2003 ; pp. 129–137. [Google Scholar]
- Belady, C.; Rawson, A.; Pfleuger, J.; Cader, T. The Green Grid Data Center Power Efficiency Metrics: PUE & DCiE. The Green Grid, Technical Report. 2008. Available online: https://www.academia.edu/23433359/Green_Grid_Data_Center_Power_Efficiency_Metrics_Pue_and_Dcie (accessed on 22 October 2019).
- Zheng, W.; Ma, K.; Wang, X. Exploiting thermal energy storage to reduce data center capital and operating expenses. In Proceedings of the HPCA’14, Orlando, FL, USA, 15–19 February 2014; pp. 132–141. [Google Scholar]
- Sharma, R.K.; Bash, C.L.; Patel, C.D.; Friedrich, R.J.; Chase, J.S. Balance of power: Dynamic thermal management for Internet Data centers. IEEE Internet Comput. 2005, 9, 42–49. [Google Scholar] [CrossRef]
- Heath, T.; Centeno, A.P.; George, P.; Ramos, L.; Jaluria, Y.; Bianchini, R. Mercury and freon: Temperature emulation and management for server systems. In Proceedings of the ASPLOS’06, San Jose, CA, USA, 21–25 October 2006; pp. 106–116. [Google Scholar]
- Xu, H.; Feng, C.; Li, B. Temperature aware workload management in geo-distributed datacenters. In Proceedings of the ICAC’13, Pittsburgh, PA, USA, 26–28 June 2013; pp. 303–314. [Google Scholar]
- Moore, J.; Chase, J.; Ranganathan, P.; Sharma, R. Making scheduling “cool”: Temperature-aware workload placement in data centers. In Proceedings of the ATEC’05, Anaheim, CA, USA, 10–15 April 2005; pp. 61–74. [Google Scholar]
- Brandon, J. Going green in the data center: Practical steps for your sme to become more environmentally friendly. Processor 2007, 29, 1–30. [Google Scholar]
- Kaushik, R.T.; Nahrstedt, K. T∗: A data-centric cooling energy costs reduction approach for big data analytics cloud. In Proceedings of the SC’12, Salt Lake City, UT, USA, 10–16 November 2012; pp. 1–11. [Google Scholar]
- El-Sayed, N.; Stefanovici, I.A.; Amvrosiadis, G.; Hwang, A.A.; Schroeder, B. Temperature management in data centers: Why some (might) like it hot. In Proceedings of the SIGMETRICS’12, London, UK, 11–15 June 2012; pp. 163–174. [Google Scholar]
- Ko, S.-W.; Kim, S.-L. Impact of Node Speed on Energy-Constrained Opportunistic Internet-of-Things with Wireless Power Transfer. Sensors 2018, 18, 2398. [Google Scholar] [CrossRef]
- Fondo-Ferreiro, P.; Rodríguez-Pérez, M.; Fernández-Veiga, M.; Herrería-Alonso, S. Matching SDN and Legacy Networking Hardware for Energy Efficiency and Bounded Delay. Sensors 2018, 18, 3915. [Google Scholar] [CrossRef]
- Li, R.; Duan, X.; Li, Y. Measurement Structures of Image Compressive Sensing for Green Internet of Things (IoT). Sensors 2019, 19, 102. [Google Scholar] [CrossRef]
- Liu, X.; Du, X.; Zhang, X.; Zhu, Q.; Wang, H.; Guizani, M. Adversarial Samples on Android Malware Detection Systems for IoT Systems. Sensors 2019, 19, 974. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, H.; Wu, J.; Song, H.; Xu, A.; Jiang, Y.; Zhang, T.; Wang, Z. Clustering Based Physical-Layer Authentication in Edge Computing Systems with Asymmetric Resources. Sensors 2019, 19, 1926. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, H.; Zhang, S.; Wu, Y.; Wang, T.; Fang, Y.; Xu, S. Joint Optimization of Interference Coordination Parameters and Base-Station Density for Energy-Efficient Heterogeneous Networks. Sensors 2019, 19, 2154. [Google Scholar] [CrossRef] [PubMed]
- Hailemariam, Z.L.; Lai, Y.-C.; Chen, Y.-H.; Wu, Y.-H.; Chang, A.; Chang, A.A. Social-Aware Peer Discovery for Energy Harvesting-Based Device-to-Device Communications. Sensors 2019, 19, 2304. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.-F.; Wen, H.; Wu, J.; Pan, F.; Xu, A.; Jiang, Y.; Xie, F.; Cao, M. Deep-Learning-Based Physical Layer Authentication for Industrial Wireless Sensor Networks. Sensors 2019, 19, 2440. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, L.; Cheng, Z. Optimizing Charging Efficiency and Maintaining Sensor Network Perpetually in Mobile Directional Charging. Sensors 2019, 19, 2657. [Google Scholar] [CrossRef]
- Hossain, M.; Georges, J.P.; Rondeau, E.; Divoux, T. Energy, Carbon and Renewable Energy: Candidate Metrics for Green-aware Routing? Sensors 2019, 19, 2901. [Google Scholar] [CrossRef]
- Hoang, T.M.; Le Van, N.; Nguyen, B.C.; Dung, L.T.; Van, N. On the Performance of Energy Harvesting Non-Orthogonal Multiple Access Relaying System with Imperfect Channel State Information over Rayleigh Fading Channels. Sensors 2019, 19, 3327. [Google Scholar] [CrossRef]
- Hassan, H.; Ahmed, I.; Ahmad, R.; Khammari, H.; Bhatti, G.; Ahmed, W.; Alam, M.M. A Machine Learning Approach to Achieving Energy Efficiency in Relay-Assisted LTE-A Downlink System. Sensors 2019, 19, 3461. [Google Scholar] [CrossRef]
- Chen, S.; Wen, H.; Wu, J.; Xu, A.; Jiang, Y.; Song, H.; Chen, Y. Radio Frequency Fingerprint-Based Intelligent Mobile Edge Computing for Internet of Things Authentication. Sensors 2019, 19, 3610. [Google Scholar] [CrossRef]
- Cruz, C.; Palomar, E.; Bravo, I.; Gardel, A. Towards Sustainable Energy-Efficient Communities Based on a Scheduling Algorithm. Sensors 2019, 19, 3973. [Google Scholar] [CrossRef]
- Charalampou, P.; Sykas, E.D. An SDN Focused Approach for Energy Aware Traffic Engineering in Data Centers. Sensors 2019, 19, 3980. [Google Scholar] [CrossRef]
- Usama, M.; Erol-Kantarci, M. A Survey on Recent Trends and Open Issues in Energy Efficiency of 5G. Sensors 2019, 19, 3126. [Google Scholar] [CrossRef] [PubMed]
Technology | Energy-Efficiency Improvement Area | Future Research Challenges for EE Improvements |
---|---|---|
Ultra-dense HetNets [13,14,15,16,17,18,19,20] | Network design with decupled data and signalling | Development of effective algorithms for the management of signalling and data decupling |
Network design with BS on/off switching | Development of effective radio resource management algorithms for efficient BS activations and deactivations | |
Network design with inter-cell interference mitigation | Development of efficient inter-cell interference management schemes | |
M-MIMO [12,14,21] | Design of energy-efficient antenna selection | Finding algorithms for the selection of an optimal number of antennas in M-MIMO systems |
Energy-efficient hardware design | Finding novel hardware designs for multi-antenna placement in UTs | |
Energy-efficient design of pilot tones | Finding algorithms for reducing the energy consumption of pilot tome transmission | |
mmWave communications [12,22,23,24] | Energy-aware transceiver designs | Finding optimal hybrid control of RF transceiver architectures and antenna designs |
Energy-efficient analogue-to-digital converters design | Finding optimal analogy-to-digital converters in terms of sampling rate resolution | |
Renewable energy sources [25,26,27] | System design which exploits renewable energy and energy cooperation | Solutions for estimation of optimal renewable energy sources for BS sites |
System design which exploits energy cooperation | Development of systems enabling surplus power transfer among BS sites | |
Design of BS site with efficient energy flows management | Development of an optimal algorithm for energy flow management on sites with renewable energy sources | |
D2D communications [12,28] | Network design based on the hybrid overlay and underlay communication | Development of algorithms for switching among underlay (assigned spectrum portion) and overlay (unassigned spectrum portion) communication designs |
System design which enables active users’ cooperation | Development of algorithms for caching, sharing or relaying data with minimal UTs energy consumption | |
LTE-U coexistence with other systems [12,29] | Design of channel allocation protocols | Finding optimal protocol for RF channel scheduling among different systems in an unlicensed band |
Energy harvesting [30,31] | Design of highly efficient energy harvesting systems | Development of algorithms for optimally balance between energy harvesting and data transmission |
Design of system which reduces energy conversion inefficiency | Development of systems based on energy beamforming, D2D and HetNets communications with more energy-efficient receivers | |
Development of systems which exploit interference in wireless networks | Development of systems which optimally exploits interference signals for energy harvesting |
Technology | Energy-Efficiency Improvement Area | Future Research Challenges for EE Improvements |
---|---|---|
DC resource management [36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81] | Energy-aware VM/containers assignment in DCs | Finding an optimal algorithm for the implementation of energy-efficient VM/containers management |
Energy-aware DCs network traffic engineering | Development of algorithms for energy-efficient adaptation of DC traffic paths and network architectures | |
Energy-efficient power distribution in DCs | Design of energy-aware solutions for intra and inter DC workload scheduling and power distribution | |
Usage of renewable energy for DC power supply | Finding solutions for optimal control of DC power supply form renewable energy and implementation of stimulating energy pricing models | |
DC servers power management [82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98] | Energy-aware DFVS scaling of server components | Finding optimal frequency/voltage and link speed scaling solutions for minimization of the DC power consumption |
Energy-aware server/server component activity scheduling | Development of novel energy-efficient algorithms for on/off server or server components switching | |
Energy-efficient hybrid (DFVS and component activity switching) solutions | Development of algorithms which combine DVFS and on/off server or server components switching | |
DC monitoring and simulation management [99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126] | Green DC monitoring | Development of novel DC monitoring tools which will enable analyses of green metrics |
Green DC simulators | Design of a system-oriented DC simulator for concurrent performance simulation of different DC elements | |
DC thermal management [127,128,129,130,131,132,133,134] | Energy-efficient cooling and workload distribution | Development of temperature-aware DC workload assignment algorithms |
DC management system which improves temperature to reliability trade-off | Design of novel temperature-resistant components for DCs with an increased average temperature |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorincz, J.; Capone, A.; Wu, J. Greener, Energy-Efficient and Sustainable Networks: State-Of-The-Art and New Trends. Sensors 2019, 19, 4864. https://doi.org/10.3390/s19224864
Lorincz J, Capone A, Wu J. Greener, Energy-Efficient and Sustainable Networks: State-Of-The-Art and New Trends. Sensors. 2019; 19(22):4864. https://doi.org/10.3390/s19224864
Chicago/Turabian StyleLorincz, Josip, Antonio Capone, and Jinsong Wu. 2019. "Greener, Energy-Efficient and Sustainable Networks: State-Of-The-Art and New Trends" Sensors 19, no. 22: 4864. https://doi.org/10.3390/s19224864
APA StyleLorincz, J., Capone, A., & Wu, J. (2019). Greener, Energy-Efficient and Sustainable Networks: State-Of-The-Art and New Trends. Sensors, 19(22), 4864. https://doi.org/10.3390/s19224864