Phenomic and Physiological Analysis of Salinity Effects on Lettuce
<p>Effect of salinity on lettuce leaf area. Total leaf area was calculated using the PlantScreen phenotyping system. Values are means of two independent experiments, each with at least four biological replicates. Bars represent standard errors; asterisks indicate statistical significance as calculated by the <span class="html-italic">t</span>-test. * (<span class="html-italic">p</span> ≤ 0.05), ** (<span class="html-italic">p</span> ≤ 0.01), *** (<span class="html-italic">p</span> ≤ 0.001), **** (<span class="html-italic">p</span> ≤ 0.0001), ns = not significant (<span class="html-italic">p</span> > 0.05).</p> "> Figure 2
<p>Effect of salinity on chlorophyll index in lettuce leaves. The chlorophyll index (SPAD) was measured from the same relative area from five leaves of similar age from each plant and averaged for one reading. Values are means of five independent experiments, each with at least four biological replicates per cultivar/accession per condition. Bars represent standard errors; asterisks indicate statistical significance as calculated by the <span class="html-italic">t</span>-test. * (<span class="html-italic">p</span> ≤ 0.05), ** (<span class="html-italic">p</span> ≤ 0.01), *** (<span class="html-italic">p</span> ≤ 0.001), **** (<span class="html-italic">p</span> ≤ 0.0001), ns = not significant (<span class="html-italic">p</span> > 0.05).</p> "> Figure 3
<p>Effect of salinity on photosynthetic CO<sub>2</sub> assimilation. Measurements from three intermediate-aged leaves from each plant were averaged for one reading. Values are means of four independent experiments, each with at least four biological replicates per cultivar/accession per condition. Bars represent standard errors; asterisks indicate statistical significance as calculated by the <span class="html-italic">t</span>-test. * (<span class="html-italic">p</span> ≤ 0.05), ** (<span class="html-italic">p</span> ≤ 0.01), *** (<span class="html-italic">p</span> ≤ 0.001), **** (<span class="html-italic">p</span> ≤ 0.0001), ns = not significant (<span class="html-italic">p</span> > 0.05).</p> "> Figure 4
<p>Analysis of chlorophyll fluorescence in salinity treated lettuce leaves. Chlorophyll fluorescence was measured using the PlantScreen phenotyping system and the FluorCam accessory. Values are means of two independent experiments, each with at least four biological replicates per cultivar/accession per condition. Fv/Fm or maximum quantum yield (QY_max) (<b>A</b>); Fv/Fm in steady state light (Fv_Fm_Lss) (<b>B</b>); non-photochemical quenching of maximum fluorescence in steady-state light (NPQ_Lss) (<b>C</b>); photochemical quenching in steady-state light (qP_Lss) (<b>D</b>); non-photochemical quenching of variable fluorescence in steady-state light (qN_Lss) (<b>E</b>); relative fluorescence decline in steady-state light (Rfd_Lss) (<b>F</b>); instantaneous photosystem II quantum yield in steady-state light (QY_Lss) (<b>G</b>). In above box plots, the boundary of the box closest to the x-axis indicates the 25th percentile, a black line within the box marks the median, and the boundary of the box farthest from the x-axis indicates the 75th percentile. Whiskers above and below the box indicate the 10th and 90th percentiles. Asterisks indicate statistical significance as calculated by the <span class="html-italic">t</span>-test. * (<span class="html-italic">p</span> ≤ 0.05), ** (<span class="html-italic">p</span> ≤ 0.01), *** (<span class="html-italic">p</span> ≤ 0.001), **** (<span class="html-italic">p</span> ≤ 0.0001), ns = not significant (<span class="html-italic">p</span> > 0.05).</p> "> Figure 5
<p>Principal component loading plot and scores of PCA on morphological, physiological, and chlorophyll fluorescence parameters of butterhead, crisphead, leaf-type, romaine, and wild lettuce grown in control and salinity conditions and grouped by colored ellipses around each lettuce type.</p> "> Figure 6
<p>Principal component loading plot and scores of PCA on morphological, physiological, and chlorophyll fluorescence parameters of sensitive, intermediate, and tolerant genotypes grown under control conditions, grouped by colored ellipses.</p> "> Figure 7
<p>Principal component loading plot and scores of PCA on morphological, physiological and chlorophyll fluorescence parameters of sensitive, intermediate and tolerant genotypes grown under salinity conditions, grouped by colored ellipses.</p> "> Figure 8
<p>Graphical representation of a correlation matrix of morphological, physiological, and chlorophyll fluorescence parameters between tolerant genotypes PI 253468, PI 171676a, and “Mayfair”, highlighting the most correlated variables. Blue color represents positive correlation whereas red represents negative correlation. Color intensity and size of the circle are proportional to the correlation coefficients which are depicted in the legend to the right.</p> "> Figure 9
<p>Graphical representation of a correlation matrix of morphological, physiological, and chlorophyll fluorescence parameters between sensitive cultivars “Laura”, “Eruption”, and “Parris Island Cos”, highlighting the most correlated variables. Blue color represents positive correlation whereas red represents negative correlation. Color intensity and size of the circle are proportional to the correlation coefficients which are depicted in the legend to the right.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Growth Conditions
2.3. Measurements
2.4. Chlorophyll Fluorescence Imaging: Data Acquisition and Analysis
2.5. Statistical Analysis
Percent Change and Leaf Thickness Calculations
3. Results
3.1. Tolerant Lettuce Cultivars and Accessions Exhibit Less Reduction in Biomass under Salinity Compared to Control Conditions
3.2. Reduction in Total Leaf Area in Tolerant Lettuce Cultivars Is Less Severe under Salinity Compared to the Control
3.3. Salinity Leads to an Increase in Chlorophyll Index in Cultivated Lettuce Cultivars
3.4. Photosynthetic CO2 Assimilation and Vapor Pressure Deficit Based on Leaf Temperature
3.5. Chlorophyll a Fluorescence
3.6. Principal Component Analysis
3.7. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Carrow, R.N.; Duncan, R.R. Salt-Affected Turfgrass Sites: Assessment and Management; John Wiley & Sons: Hoboken, NJ, USA, 1998; ISBN 978-1-57504-091-2. [Google Scholar]
- Pitman, M.; Lauchli, A. Global impact of salinity and agricultural ecosystems. In Salinity: Environment—Plants—Molecules; Springer Link: Berlin, Germany, 2000; pp. 3–20. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.P. (Ed.) Proceedings of the Global Forum on Salinization and Climate Change; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; p. 121. [Google Scholar]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. U. N. Sustain. Dev. J. 2014. [Google Scholar] [CrossRef]
- Simko, I.; Hayes, R.J.; Mou, B.; McCreight, J.D. Lettuce and spinach. In Yield Gains in Major U.S. Field Crops; Smith, S., Diers, B., Specht, J., Carver, B., Eds.; CSSA Special Publication; American Society of Agronomy, Inc.: Madison, WI, USA; Crop Science Society of America, Inc.: Fitchburg, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 2014; pp. 53–86. ISBN 978-0-89118-620-5. [Google Scholar]
- Humphries, J.M.; Khachik, F. Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J. Agric. Food Chem. 2003, 51, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, C.; Cardinault, N.; Gueux, E.; Jaffrelo, L.; Rock, E.; Mazur, A.; Amouroux, P.; Rémésy, C. Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 2004, 23, 605–614. [Google Scholar] [CrossRef]
- Shannon, M.C.; Grieve, C.M. Tolerance of vegetable crops to salinity. Sci. Hortic. 1998, 78, 5–38. [Google Scholar] [CrossRef]
- Cahn, M.; Ajwa, H. Management of Salinity for Lettuce Production; University of California Cooperative Extension Monterey County: Salinas, CA, USA, 2004; Available online: http://cemonterey.ucanr.edu/files/171001.pdf (accessed on 1 November 2019).
- Barassi, C.A.; Ayrault, G.; Creus, C.M.; Sueldo, R.J.; Sobrero, M.T. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci. Hortic. 2006, 109, 8–14. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Savasturk, O.; Gunes, A. Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci. Hortic. 2007, 114, 5–10. [Google Scholar] [CrossRef]
- Kaya, C.; Higgs, D.; Sakar, E. Response of two leafy vegetables grown at high salinity to supplementary potassium and phosphorus during different growth stages. J. Plant Nutr. 2002, 25, 2663–2676. [Google Scholar] [CrossRef]
- Mohammadi, P.; Khoshgoftarmanesh, A.H. The effectiveness of synthetic zinc(Zn)-amino chelates in supplying Zn and alleviating salt-induced damages on hydroponically grown lettuce. Sci. Hortic. 2014, 172, 117–123. [Google Scholar] [CrossRef]
- Mota-Cadenas, C.; Alcaraz-López, C.; Martínez-Ballesta, M.C.; Carvajal, M. How salinity affects CO2 fixation by horticultural crops. HortScience 2010, 45, 1798–1803. [Google Scholar] [CrossRef]
- Pérez-López, U.; Miranda-Apodaca, J.; Muñoz-Rueda, A.; Mena-Petite, A. Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. J. Plant Physiol. 2013, 170, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.C.; Mccreight, J.D.; Draper, J.H. Screening tests for salt tolerance in lettuce Lactuca sativa. J. Am. Soc. Hortic. Sci. 1983, 108, 225–230. [Google Scholar]
- Simko, I.; Hayes, R.J.; Furbank, R.T. Non-destructive phenotyping of lettuce plants in early stages of development with optical sensors. Front. Plant Sci. 2016, 7, 1985. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014. [Google Scholar] [CrossRef]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.-K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef]
- Hernández, J.A. Salinity tolerance in plants: Trends and perspectives. Int. J. Mol. Sci. 2019, 20, 2408. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Negrão, S.; Schmöckel, S.M.; Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, F.; Tilbrook, J.; Trittermann, C.; Berger, B.; Roy, S.J.; Seki, M.; Shinozaki, K.; Tester, M. Comparison of leaf sheath transcriptome profiles with physiological traits of bread wheat cultivars under salinity stress. PLoS ONE 2015, 10, e0133322. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Nedbal, L.; Soukupová, J.; Kaftan, D.; Whitmarsh, J.; Trtílek, M. Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynth. Res. 2000, 66, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed]
- Govindje, E. Sixty-Three years since Kautsky: Chlorophyll a fluorescence. Funct. Platnt Biol. 1995, 22, 131. [Google Scholar] [CrossRef]
- Kautsky, H.; Hirsch, A. Neue versuche zur kohlensäureassimilation. Naturwissenschaften 1931, 19, 964. [Google Scholar] [CrossRef]
- Oxborough, K.; Baker, N.R. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—Calculation of qP and Fv−;/Fm−; without measuring Fo−. Photosynth. Res. 1997, 54, 135–142. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.; Guidi, L.; Jajoo, A.; Li, P.; et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 2017, 132, 13–66. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dąbrowski, P.; et al. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res. 2014, 122, 121–158. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, M.H.; Goltsev, V.N.; Żuk-Gołaszewska, K.; Zivcak, M.; Brestic, M.; Goltsev, V.N.; Żuk-Gołaszewska, K.; Zivcak, M.; Brestic, M. Chlorophyll Fluorescence: Understanding Crop Performance—Basics and Applications; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-15360-5. [Google Scholar]
- Butler, W.L. Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol. 1978, 29, 345–378. [Google Scholar] [CrossRef]
- Oxborough, K. Imaging of chlorophyll a fluorescence: Theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J. Exp. Bot. 2004, 55, 1195–1205. [Google Scholar] [CrossRef]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Horton, P.; Ruban, A.V. Regulation of photosystem II. Photosynth. Res. 1992, 34, 375–385. [Google Scholar] [CrossRef]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New fluorescence parameters for the determination of Qa redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209. [Google Scholar] [CrossRef]
- Oja, V.; Laisk, A. Photosystem II antennae are not energetically connected: Evidence based on flash-induced O2 evolution and chlorophyll fluorescence in sunflower leaves. Photosynth. Res. 2012, 114, 15–28. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. J. Plant Physiol. 1987, 131, 101–110. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Babani, F.; Langsdorf, G. Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth. Res. 2007, 93, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267–291. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, Y.; Du, J.; Guo, X.; Wen, W.; Gu, S.; Wang, J.; Fan, J. Crop phenomics: Current status and perspectives. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Simko, I.; Jimenez-Berni, J.A.; Sirault, X.R.R. Phenomic approaches and tools for phytopathologists. Phytopathology 2016, 107, 6–17. [Google Scholar] [CrossRef]
- Simko, I.; Jimenez-Berni, J.A.; Furbank, R.T. Detection of decay in fresh-cut lettuce using hyperspectral imaging and chlorophyll fluorescence imaging. Postharvest Biol. Technol. 2015, 106, 44–52. [Google Scholar] [CrossRef]
- Teng, Z.; Luo, Y.; Bornhorst, E.R.; Zhou, B.; Simko, I.; Trouth, F. Identification of romaine lettuce (Lactuca sativa var. longifolia) cultivars with reduced browning discoloration for fresh-cut processing. Postharvest Biol. Technol. 2019, 156, 110931. [Google Scholar]
- Sytar, O.; Zivcak, M.; Bruckova, K.; Brestic, M.; Hemmerich, I.; Rauh, C.; Simko, I. Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Sci. Hortic. 2018, 239, 193–204. [Google Scholar] [CrossRef]
- Xu, C.; Mou, B. Evaluation of lettuce genotypes for salinity tolerance. HortScience 2015, 50, 1441–1446. [Google Scholar] [CrossRef]
- Beator, J.; Kloppstech, K. The circadian oscillator coordinates the synthesis of apoproteins and their pigments during chloroplast development. Plant Physiol. 1993, 103, 191–196. [Google Scholar] [CrossRef]
- Harmer, S.; Hogenesch, L.; Straume, M.; Chang, H.; Han, B.; Zhu, T.; Wang, X.; Kreps, J.; Kay, S. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 2000, 290, 2110–2113. [Google Scholar] [CrossRef]
- Kellmann, J.; Merforth, N.; Wiese, M.; Pichersky, E.; Piechulla, B. Concerted circadian oscillations in transcript levels of nineteen Lha/b (cab) genes in Lycopersicon esculentum (tomato). Mol. Gen. Genet. 1993, 237, 439–448. [Google Scholar] [PubMed]
- Legnaioli, T.; Cuevas, J.; Mas, P. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J. 2009, 28, 3745–3757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papenbrock, J. Expression studies in tetrapyrrole biosynthesis: Inverse maxima of magnesium chelatase and ferrochleatase activity during cyclic photoperiods. Planta 1999, 208, 264–273. [Google Scholar] [CrossRef]
- Hoagland, D.R. The Water-Culture Method for Growing Plants without Soil; College of Agriculture, University of California: Berkley, CA, USA, 1950. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Kassambara, A. ggpubr: “ggplot2” Based Publication Ready Plots. 2019. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 1 November 2019).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Pallmann, P.; Hothorn, L.A. Analysis of means: A generalized approach using R. J. Appl. Stat. 2016, 43, 1541–1560. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Vu, V.Q. ggbiplot: A ggplot2 Based biplot. 2011. Available online: http://github.com/vqv/ggbiplot (accessed on 1 November 2019).
- Wei, T.; Simko, V. R package “corrplot”: Visualization of a Correlation Matrix. 2017. Available online: https://github.com/taiyun/corrplot (accessed on 1 November 2019).
- Vile, D.; Garnier, É.; Shipley, B.; Laurent, G.; Navas, M.-L.; Roumet, C.; Lavorel, S.; Díaz, S.; Hodgson, J.G.; Lloret, F.; et al. Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann. Bot. 2005, 96, 1129–1136. [Google Scholar] [CrossRef]
- Kumar, M.; Kesawat, M. Mechanism of salt stress tolerance and pathways in crop plants. Int. J. Genom. 2018, 2014, 27–44. [Google Scholar]
- Abebe, T.; Guenzi, A.C.; Martin, B.; Cushman, J.C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 2003, 131, 1748–1755. [Google Scholar] [CrossRef]
- Tuteja, N. Mechanisms of high salinity tolerance in plants. Methods Enzymol. 2007, 428, 419–438. [Google Scholar]
- Flowers, T.J.; Colmer, T.D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Awlia, M.; Nigro, A.; Fajkus, J.; Schmoeckel, S.M.; Negrão, S.; Santelia, D.; Trtílek, M.; Tester, M.; Julkowska, M.M.; Panzarová, K. High-Throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 2016, 7, 1414. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wakao, S.; Fischer, B.; Niyogi, K. Sensing and responding to excess light. Annu. Rev. Plant Biol. 2009, 60, 239–260. [Google Scholar] [CrossRef] [PubMed]
- Niyogi, K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 333–359. [Google Scholar] [CrossRef]
- Lee, K.P.; Kim, C.; Landgraf, F.; Apel, K. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. PNAS 2007, 104, 10270–10275. [Google Scholar] [CrossRef]
- Meskauskiene, R.; Nater, M.; Goslings, D.; Kessler, F.; op den Camp, R.; Apel, K. FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2001, 98, 12826–12831. [Google Scholar] [CrossRef]
- Egea-Cortines, M.; Doonan, J.H. Editorial: Phenomics. Front. Plant Sci. 2018. [Google Scholar] [CrossRef]
- Rungrat, T.; Awlia, M.; Brown, T.; Cheng, R.; Sirault, X.; Fajkus, J.; Trtilek, M.; Furbank, B.; Badger, M.; Tester, M.; et al. Using phenomic analysis of photosynthetic function for abiotic stress response gene discovery. Arabidopsis Book 2016, 14, e0185. [Google Scholar] [CrossRef]
- Yichie, Y.; Brien, C.; Berger, B.; Roberts, T.H.; Atwell, B.J. Salinity tolerance in Australian wild Oryza species varies widely and matches that observed in O. sativa. Rice 2018, 11, 66. [Google Scholar] [CrossRef]
- Gehani, I.A.A.; Mjawer, N.B. Influence of nitrogen addition and sodium chloride in irrigation water on growth of lettuce. Int. J. Agric. Environ. Biores. 2018, 3, 13–20. [Google Scholar]
- Al Gehani, I.; Ismail, T. Effect of Soil Amendment on Growth and Physiological Processes of Rocket (Eruca sativa L.) Grown under Salinity Conditions; Social Science Research Network: Rochester, NY, USA, 2016. [Google Scholar]
- Longstreth, D.J.; Nobel, P.S. Salinity effects on leaf anatomy: Consequences for photosynthesis. Plant Physiol. 1979, 63, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.R.; Diaz-Vivancos, P.; Álvarez, S.; Fernández-García, N.; Sánchez-Blanco, M.J.; Hernández, J.A. NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. J. Plant Physiol. 2015, 183, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.-R.; Diaz-Vivancos, P.; Álvarez, S.; Fernández-García, N.; Sanchez-Blanco, M.J.; Hernández, J.A. Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 2015, 242, 829–846. [Google Scholar] [CrossRef] [PubMed]
- Hayward, H.E.; Long, E.M. Anatomical and physiological responses of the tomato to varying concentrations of sodium chloride sodium sulphate, and nutrient solutions. Bot. Gaz. 1941, 102, 437–462. [Google Scholar] [CrossRef]
- Franco-Navarro, J.D.; Brumós, J.; Rosales, M.A.; Cubero-Font, P.; Talón, M.; Colmenero-Flores, J.M. Chloride regulates leaf cell size and water relations in tobacco plants. J. Exp. Bot. 2016, 67, 873–891. [Google Scholar] [CrossRef]
- James, R.A.; Rivelli, A.R.; Munns, R.; Caemmerer, S. von Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct. Plant Biol. 2002, 29, 1393–1403. [Google Scholar] [CrossRef]
- Cramer, G.R.; Bowman, D.C. Kinetics of maize leaf elongation. I. Increased yield threshold limits short-term, steady-state elongation rates after exposure to salinity. J. Exp. Bot. 1991, 42, 1417–1426. [Google Scholar] [CrossRef]
- Fricke, W.; Akhiyarova, G.; Veselov, D.; Kudoyarova, G. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J. Exp. Bot. 2004, 55, 1115–1123. [Google Scholar] [CrossRef]
- Passioura, J.B.; Munns, R. Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Funct. Plant Biol. 2000, 27, 941–948. [Google Scholar] [CrossRef]
- Ashraf, M. The effect of NaCI on water relations, chlorophyll, and protein and proline contents of two cultivars of blackgram (Vigna mungo L.). Plant Soil 1989, 119, 205–210. [Google Scholar] [CrossRef]
- Grange, R.I.; Hand, D.W. A review of the effects of atmospheric humidity on the growth of horticultural crops. J. Hortic. Sci. 1987, 62, 125–134. [Google Scholar] [CrossRef]
- Cramer, G.R. Response of abscisic acid mutants of Arabidopsis to salinity. Funct. Plant Biol. 2002, 29, 561–567. [Google Scholar] [CrossRef]
- Yeo, A.R.; Lee, A.-S.; Izard, P.; Boursier, P.J.; Flowers, T.J. Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). J. Exp. Bot. 1991, 42, 881–889. [Google Scholar] [CrossRef]
- Stessman, D.; Miller, A.; Spalding, M.; Rodermel, S. Regulation of photosynthesis during Arabidopsis leaf development in continuous light. Photosynth. Res. 2002, 72, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Velez-Ramirez, A.I.; van Ieperen, W.; Vreugdenhil, D.; Millenaar, F.F. Plants under continuous light. Trends Plant Sci. 2011, 16, 310–318. [Google Scholar] [CrossRef] [Green Version]
Cultivar | FW (g) | DW (g) | DW/FW | |||||
---|---|---|---|---|---|---|---|---|
Control | Salt | % Reduction | Control | Salt | % Reduction | Control | Salt | |
LAU | 9.9 ± 0.51 a | 3.3 ± 0.39 b | 67 | 1.47 ± 0.16 a | 0.91 ± 0.21 b | 39 | 0.078 ± 0.004 a | 0.078 ± 0.009 a |
EAB | 13.2 ± 1.27 a | 6.1 ± 0.64 b | 54 | 1.93 ± 0.14 a | 1.44 ± 0.20 a | 25 | 0.079 ± 0.004 a | 0.096 ± 0.003 b |
MOR | 11.4 ± 0.99 a | 5.4 ± 0.65 b | 52 | 1.72 ± 0.14 a | 1.26 ± 0.18 a | 27 | 0.079 ± 0.004 a | 0.101 ± 0.007 b |
MAY | 7.2 ± 0.54 a | 4.9 ± 0.86 b | 31 | 1.94 ± 0.11 a | 1.51 ± 0.10 b | 22 | 0.080 ± 0.003 a | 0.101 ± 0.003 b |
ERU | 6.4 ± 0.89 a | 2.3 ± 0.38 b | 65 | 1.01 ± 0.08 a | 0.70 ± 0.13 a | 31 | 0.078 ± 0.002 a | 0.092 ± 0.002 b |
PIC | 10.7 ± 0.84 a | 4.3 ± 0.40 b | 60 | 1.93 ± 0.16 a | 1.24 ± 0.19 b | 36 | 0.095 ± 0.006 a | 0.122 ± 0.005 b |
P17 | 12.7 ± 1.87 a | 9.2 ± 1.54 a | 27 | 2.49 ± 0.28 a | 1.91 ± 0.20 a | 23 | 0.102 ± 0.004 a | 0.116 ± 0.003 b |
SHI | 14.8 ± 1.57 a | 9.0 ± 1.44 b | 39 | 2.11 ± 0.22 a | 1.72 ± 0.19 a | 19 | 0.074 ± 0.004 a | 0.103 ± 0.004 b |
P25 | 2.4 ± 0.43 a | 2.0 ± 0.38 a | 16 | 0.76 ± 0.15 a | 0.81 ± 0.20 a | −7 | 0.112 ± 0.006 a | 0.145 ± 0.009 b |
P49 | 3.8 ± 0.34 a | 2.0 ± 0.20 b | 47 | 1.19 ± 0.20 a | 0.59 ± 0.12 b | 50 | 0.139 ± 0.009 a | 0.135 ± 0.007 a |
Cultivar | Treatment | VpdL (kPa) | % Reduction | Significance |
---|---|---|---|---|
LAU | Control | 0.72 ± 0.03 | 0 | ns |
LAU | Salt | 0.72 ± 0.02 | ||
EAB | Control | 0.67 ± 0.03 | −17 | * |
EAB | Salt | 0.79 ± 0.04 | ||
MOR | control | 0.58 ± 0.03 | −18 | *** |
MOR | Salt | 0.69 ± 0.01 | ||
MAY | control | 0.53 ± 0.02 | −16 | ** |
MAY | Salt | 0.62 ± 0.02 | ||
ERU | control | 0.61 ± 0.03 | 8 | * |
ERU | Salt | 0.56 ± 0.01 | ||
PIC | control | 0.61 ± 0.03 | −20 | * |
PIC | Salt | 0.73 ± 0.04 | ||
P17 | control | 0.82 ± 0.04 | 9 | ns |
P17 | Salt | 0.75 ± 0.03 | ||
SHI | control | 0.76 ± 0.03 | −3 | ns |
SHI | Salt | 0.78 ± 0.03 | ||
P25 | control | 0.60 ± 0.04 | −13 | ns |
P25 | Salt | 0.68 ± 0.02 | ||
P49 | control | 0.59 ± 0.03 | −12 | ns |
P49 | Salt | 0.66 ± 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, N.D.; Simko, I.; Mou, B. Phenomic and Physiological Analysis of Salinity Effects on Lettuce. Sensors 2019, 19, 4814. https://doi.org/10.3390/s19214814
Adhikari ND, Simko I, Mou B. Phenomic and Physiological Analysis of Salinity Effects on Lettuce. Sensors. 2019; 19(21):4814. https://doi.org/10.3390/s19214814
Chicago/Turabian StyleAdhikari, Neil D., Ivan Simko, and Beiquan Mou. 2019. "Phenomic and Physiological Analysis of Salinity Effects on Lettuce" Sensors 19, no. 21: 4814. https://doi.org/10.3390/s19214814
APA StyleAdhikari, N. D., Simko, I., & Mou, B. (2019). Phenomic and Physiological Analysis of Salinity Effects on Lettuce. Sensors, 19(21), 4814. https://doi.org/10.3390/s19214814