Application of a Fluorescent Probe for the Online Measurement of PM-Bound Reactive Oxygen Species in Chamber and Ambient Studies
<p>(<b>a</b>) Simplified cross-section of the microfluidic cell showing the assembly of key components. The cells outer dimensions are 30 × 30 × 48 mm. Notably, the liquid flow-path is a continuous cylinder throughout the entire illuminated path, significantly reducing the entrapment of bubbles inside the cell. (<b>b</b>) The assembly of the full fluorimeter illustrating the connections between the fluorescence cell, CPS450 laser and USB2000+ spectrometer.</p> "> Figure 2
<p>The typical fluorescence response measured for the 9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) probe with the flow-through fluorimeter for a total phase and gas phase sample. The response wavelengths averaged for the measurement of the primary and secondary peaks are indicated by the blue and red shaded regions, respectively. The large third peak centred on 450 nm is the laser used as the excitation source.</p> "> Figure 3
<p>(<b>a–c</b>) The calibration plots for the three flow-through fluorimeters constructed and tested. (<b>a</b>) and (<b>b</b>) use USB2000+ series spectrometers, whilst (<b>c</b>) uses a newer FLAME spectrometer with temperature stabilization. The flame spectrometer is more adept at measuring very low concentrations, although these are far below those measured when integrated into the Particle Into Nitroxide Quencher (PINQ).</p> "> Figure 4
<p>(<b>a</b>) The raw fluorescence response of the PINQ sample over time for side-stream cigarette smoke in a chamber. The alternating signal is caused by switching between filtered and unfiltered air. Sharp spikes in the signal are caused by bubbles in the sample line. The total and gas phase data points coloured indicate the data points averaged to generate the next plot in the figure. (<b>b</b>) The de-bubbled, trimmed and averaged plateaus and corresponding standard error of the alternating signal which correspond to the total and gas phase. (<b>c</b>) The final particle phase reactive oxygen species (ROS) concentration with standard error calculated by subtracting the interpolated gas phase from the total phase after correcting for background fluorescence and converting the signal to equivalent concentrations of BPEAnit-Me per cubic meter of air.</p> "> Figure 5
<p>The ROS data, normalized by its initial value and corrected for mass losses, along with two different fitted curves to the ROS data using different assumptions of ROS decay. (<b>a</b>) shows a fit which assumes that all ROS present have a single half-life, with a value calculated from the fit of 120 min with a 95% confidence interval (CI)(110,140). This model does not fit well at low or high elapsed times. (<b>b</b>) shows a fit which assumes there are two subsets of ROS, in which the second set has a lifetime which is effectively infinite over the measurement period. The half-life of the short-lived ROS using this model is 27 min with a 95% CI(23,31).</p> "> Figure 6
<p>(<b>a</b>) shows a day period of analysed PINQ data collected at a rooftop site measuring ambient background aerosol in Guangzhou, China. (<b>b</b>) shows the hourly average organic mass concentration measured by the time-of-flight Aerosol Chemical Speciation Monitor (TOF-ACSM). (<b>c</b>) gives the NO<sub>3</sub> mass measured by the TOF-ACSM. (<b>d</b>) shows the hourly total particulate matter (PM)<sub>2.5</sub> mass concentration measured by the BAM-1020.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Online PINQ System
2.1.1. Flow Switching Assembly
2.1.2. Flow-Through Fluorimeter
2.1.3. Debubbler
2.2. Fluorimeter Calibration
2.3. PINQ Data Analysis
2.4. Side-Stream Cigarette Smoke Chamber Study
2.5. Field Measurements of Background PM in Gaungzhou, China
3. Results
3.1. Calibration Plots of the Flow-Through Fluorimeters
3.2. Data Analysis Methodology
3.3. PM-Bound ROS Half-Lives
3.4. Application to Ambient Measurements
4. Discussion
4.1. The Online PINQ
4.2. Implications of the Initial Ambient Study
4.3. Half-Lives of PM-Bound ROS
4.4. What Time Resolution is Necessary for the Measurement of PM-Bound ROS?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Englert, N. Fine particles and human health—A review of epidemiological studies. Toxicol. Lett. 2004, 149, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Heal. A Glob. Access Sci. Source 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Guo, X.; Cheung, F.M.H.; Yung, K.K.L. The association between PM2.5 exposure and neurological disorders: A systematic review and meta-analysis. Sci. Total Environ. 2019, 655, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- Hellack, B.; Nickel, C.; Albrecht, C.; Kuhlbusch, T.A.J.; Boland, S.; Baeza-Squiban, A.; Wohlleben, W.; Schins, R.P.F. Analytical methods to assess the oxidative potential of nanoparticles: A review. Environ. Sci. Nano 2017, 4, 1920–1934. [Google Scholar] [CrossRef]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage. Environ. Health Perspect. 2002, 111, 455–460. [Google Scholar] [CrossRef]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Kelly, F.J. Oxidative stress: Its role in air pollution and adverse health effects. Occup. Environ. Med. 2003, 60, 612–616. [Google Scholar] [CrossRef]
- Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol. 2004, 142, 231–255. [Google Scholar] [CrossRef]
- Arangio, A.M.; Tong, H.; Socorro, J.; Pöschl, U.; Shiraiwa, M. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles. Atmos. Chem. Phys. 2016, 16, 13105–13119. [Google Scholar] [CrossRef] [Green Version]
- Dellinger, B.; Pryor, W.A.; Cueto, R.; Squadrito, G.L.; Hegde, V.; Deutsch, W.A. Role of free radicals in the toxicity of airborne fine particulate matter. Chem. Res. Toxicol. 2001, 14, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Shein, M.; Jeschke, G. Comparison of Free Radical Levels in the Aerosol from Conventional Cigarettes, Electronic Cigarettes, and Heat-Not-Burn Tobacco Products. Chem. Res. Toxicol. 2019, 32, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Fang, T.; Verma, V.; Zeng, L.; Weber, R.J. A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP. Atmos. Meas. Tech. 2017, 10, 2821–2835. [Google Scholar] [CrossRef] [Green Version]
- Eiguren-Fernandez, A.; Kreisberg, N.; Hering, S. An online monitor of the oxidative capacity of aerosols (o-MOCA). Atmos. Meas. Tech. 2017, 10, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Bruns, E.A.; Zotter, P.; Stefenelli, G.; Prévôt, A.S.H.; Baltensperger, U.; EI-Haddad, I.; Dommen, J. Development, characterization and first deployment of an improved online reactive oxygen species analyzer. Atmos. Meas. Tech. Discuss. 2017, 1–27. [Google Scholar] [CrossRef]
- Wragg, F.P.H.; Fuller, S.J.; Freshwater, R.; Green, D.C.; Kelly, F.J.; Kalberer, M. An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies. Atmos. Meas. Tech. 2016, 9, 4891–4900. [Google Scholar] [CrossRef] [Green Version]
- Venkatachari, P.; Hopke, P.K. Development and Laboratory Testing of an Automated Monitor for the Measurement of Atmospheric Particle-Bound Reactive Oxygen Species (ROS). Aerosol Sci. Technol. 2008, 42, 629–635. [Google Scholar] [CrossRef]
- Hung, H.-F.; Wang, C.-S. Experimental determination of reactive oxygen species in Taipei aerosols. J. Aerosol Sci. 2001, 32, 1201–1211. [Google Scholar] [CrossRef]
- Fang, T.; Verma, V.; Guo, H.; King, L.E.; Edgerton, E.S.; Weber, R.J. A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: Results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE). Atmos. Meas. Tech. Discuss. 2014, 7, 7245–7279. [Google Scholar] [CrossRef]
- Hedayat, F.; Stevanovic, S.; Miljevic, B.; Bottle, S.; Ristovski, Z.D.D. Review-evaluating the molecular assays for measuring the oxidative potential of particulate matter. Chem. Ind. Chem. Eng. Q. 2015, 21, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.K.; Bello, D.; Budhlall, B.; Rogers, E.; Milton, D.K. Screening for Oxidative Stress Elicited by Engineered Nanomaterials: Evaluation of Acellular DCFH Assay. Dose. Response. 2012, 10, 308–330. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.J.J.; Wragg, F.P.H.P.H.; Nutter, J.; Kalberer, M. Comparison of on-line and off-line methods to quantify reactive oxygen species (ROS) in atmospheric aerosols. Atmos. Environ. 2014, 92, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Zhang, Y.; Zhang, Y.; Fang, D.; Schauer, J.J. Optimization of the Measurement of Particle-Bound Reactive Oxygen Species with 2′,7′-dichlorofluorescin (DCFH). Water. Air. Soil Pollut. 2016, 227, 164. [Google Scholar] [CrossRef]
- King, L.E.; Weber, R.J. Development and testing of an online method to measure ambient fine particulate reactive oxygen species (ROS) based on the 2′,7′-dichlorofluorescin (DCFH) assay. Atmos. Meas. Tech. 2013, 6, 1647–1658. [Google Scholar] [CrossRef]
- Wang, Y.; Hopke, P.K.; Sun, L.; Chalupa, D.C.; Utell, M.J. Laboratory and field testing of an automated atmospheric particle-bound reactive oxygen species sampling-analysis system. J. Toxicol. 2011, 2011, 419476–419479. [Google Scholar] [CrossRef]
- Fairfull-Smith, K.E.; Bottle, S.E. The synthesis and physical properties of novel polyaromatic profluorescent isoindoline nitroxide probes. European J. Org. Chem. 2008, 2008, 5391–5400. [Google Scholar] [CrossRef]
- Brown, R.A.; Stevanovic, S.; Bottle, S.; Ristovski, Z.D. An instrument for the rapid quantification of PM-bound ROS: The Particle Into Nitroxide Quencher (PINQ). Atmos. Meas. Tech. 2019, 12, 2387–2401. [Google Scholar] [CrossRef]
- Stevanovic, S.; Vaughan, A.; Hedayat, F.; Salimi, F.; Rahman, M.M.; Zare, A.; Brown, R.A.J.; Brown, R.A.J.; Wang, H.; Zhang, Z.; et al. Oxidative potential of gas phase combustion emissions—An underestimated and potentially harmful component of air pollution from combustion processes. Atmos. Environ. 2017, 158, 227–235. [Google Scholar] [CrossRef]
- Stevanovic, S.; Miljevic, B.; Madl, P.; Clifford, S.; Ristovski, Z. Characterisation of a Commercially Available Thermodenuder and Diffusion Drier for Ultrafine Particles Losses. AEROSOL AIR Qual. Res. 2015, 15, 357. [Google Scholar] [CrossRef]
- Stevanovic, S.; Gali, N.K.; Salimi, F.; Brown, R.A.; Ning, Z.; Cravigan, L.; Brimblecombe, P.; Bottle, S.; Ristovski, Z.D. Diurnal profiles of particle-bound ROS of PM2.5 in urban environment of Hong Kong and their association with PM2.5, black carbon, ozone and PAHs. Atmos. Environ. 2019, 117023. [Google Scholar] [CrossRef]
- Miljevic, B.; Fairfull-Smith, K.E.; Bottle, S.E.; Ristovski, Z.D. The application of profluorescent nitroxides to detect reactive oxygen species derived from combustion-generated particulate matter: Cigarette smoke— A case study. Atmos. Environ. 2010, 44, 2224–2230. [Google Scholar] [CrossRef]
- Fröhlich, R.; Cubison, M.; Slowik, J.; Bukowiecki, N.; Prévôt, A.; Baltensperger, U.; Schneider, J.; Kimmel, J.; Gonin, M.; Rohner, U.; et al. The ToF-ACSM: A portable aerosol chemical speciation monitor with TOFMS detection. Atmos. Meas. Tech. 2013, 6, 3225. [Google Scholar] [CrossRef]
- Stevanovic, S.; Miljevic, B.; Eaglesham, G.K.; Bottle, S.E.; Ristovski, Z.D.; Fairfull-Smith, K.E. The use of a nitroxide probe in DMSO to capture free radicals in particulate pollution. European J. Org. Chem. 2012, 5908–5912. [Google Scholar] [CrossRef]
- Vesna, O.; Sax, M.; Kalberer, M.; Gaschen, A.; Ammann, M. Product study of oleic acid ozonolysis as function of humidity. Atmos. Environ. 2009, 43, 3662–3669. [Google Scholar] [CrossRef]
Cl− | NO3− | SO42− | NH4+ | Org | |
---|---|---|---|---|---|
Corr. Fac. | 0.39 | 0.65 | 0.28 | 0.50 | 0.54 |
p-Value | 8 × 10–7 | 2 × 10–19 | 6 × 10–4 | 7 × 10–11 | 5 × 10–13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, R.; Stevanovic, S.; Brown, Z.; Cai, M.; Zhou, S.; Song, W.; Wang, X.; Miljevic, B.; Zhao, J.; Bottle, S.; et al. Application of a Fluorescent Probe for the Online Measurement of PM-Bound Reactive Oxygen Species in Chamber and Ambient Studies. Sensors 2019, 19, 4564. https://doi.org/10.3390/s19204564
Brown R, Stevanovic S, Brown Z, Cai M, Zhou S, Song W, Wang X, Miljevic B, Zhao J, Bottle S, et al. Application of a Fluorescent Probe for the Online Measurement of PM-Bound Reactive Oxygen Species in Chamber and Ambient Studies. Sensors. 2019; 19(20):4564. https://doi.org/10.3390/s19204564
Chicago/Turabian StyleBrown, Reece, Svetlana Stevanovic, Zachary Brown, Mingfu Cai, Shengzhen Zhou, Wei Song, Xinming Wang, Branka Miljevic, Jun Zhao, Steven Bottle, and et al. 2019. "Application of a Fluorescent Probe for the Online Measurement of PM-Bound Reactive Oxygen Species in Chamber and Ambient Studies" Sensors 19, no. 20: 4564. https://doi.org/10.3390/s19204564
APA StyleBrown, R., Stevanovic, S., Brown, Z., Cai, M., Zhou, S., Song, W., Wang, X., Miljevic, B., Zhao, J., Bottle, S., & Ristovski, Z. (2019). Application of a Fluorescent Probe for the Online Measurement of PM-Bound Reactive Oxygen Species in Chamber and Ambient Studies. Sensors, 19(20), 4564. https://doi.org/10.3390/s19204564