An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes
<p>Geographical distribution of the five selected lakes including: (<b>A</b>) Lake Athabasca, (<b>B</b>) Caspian Sea, (<b>C</b>) North Aral Sea, (<b>D</b>) Lake Balkhash, and (<b>E</b>) Lake Issyk-Kul.</p> "> Figure 2
<p>Workflow of the method proposed for reconstructing time series of lake area and volume variations including: (<b>A</b>) generating lookup tables, (<b>B</b>) extracting lakes boundary, (<b>C</b>) estimating lake areas, and (<b>D</b>) calculating lake volumes variations.</p> "> Figure 3
<p>Area and water level regressions for Lake Athabasca (<b>a</b>), Caspian Sea (<b>b</b>), North Aral Sea (<b>c</b>), Lake Balkhash (<b>d</b>) and Lake Issyk-Kul (<b>e</b>), with R<sup>2</sup> values of 0.621, 0.743, 0.919, 0.573 and 0.873 respectively.</p> "> Figure 4
<p>Lake area, level and volume variations in monthly (<b>a</b>,<b>c</b>) and annual (<b>b</b>,<b>d</b>) timescales for Lake Athabasca.</p> "> Figure 5
<p>Lake area, level and volume variations in monthly (<b>a</b>,<b>c</b>) and annual (<b>b</b>,<b>d</b>) timescales for Caspian Sea.</p> "> Figure 6
<p>Lake area, level and volume variations in monthly (<b>a</b>,<b>c</b>) and annual (<b>b</b>,<b>d</b>) timescales for North Aral Sea.</p> "> Figure 7
<p>Lake area, level and volume variations in monthly (<b>a</b>,<b>c</b>) and annual (<b>b</b>,<b>d</b>) timescales for Lake Balkhash.</p> "> Figure 8
<p>Lake area, level and volume variations in monthly (<b>a</b>,<b>c</b>) and annual (<b>b</b>,<b>d</b>) timescales for Lake Issyk-Kul.</p> ">
Abstract
:1. Introduction
2. Lake Cases Selected in This Study
3. Study Data
3.1. The Global Surface Water Dataset for Extracting Monthly Lake Area During 1984–2015
3.2. Landsat 8 OLI Imagery for Mapping Lake Areas During 2013–2018
3.3. Lake Water-Level Data from Satellite Altimetry
4. Methodology
4.1. Reconstructing Time Series of Inundation Areas of Large Lakes
4.1.1. Generating Lookup Tables of Shoreline Sater Frequency and Corresponding Lake Area
4.1.2. Extracting Lakes Shorelines from Monthly GSW Dataset and OLI Imagery
4.1.3. Estimating Lake Areas via Shoreline Water Frequency from Lookup Tables
4.1.4. Accuracy Assessment of Reconstructed Lake Area Time Aeries
4.2. Reconstructing Missing Lake Area and Water Level Records During 1984–2018
4.3. Reconstructing Time Series of Lake Volumes Variations from 1984 to 2018
- = Volume change with respect to the initial state (t0) at the nth month. n = Number of months;
- Ht = Level of the water body at month t and H0 = Level of the water body at the previous month;
- At = Area of the water extent at month t and A0 = Area of the water extent at the previous month.
5. Results and Discussions
5.1. Regression Analysis of Estimated Lake Area and Water Level
5.2. Evaluation of Methods for Reconstructing Time Series of Area, Water Level and Volume Variation
5.3. Analysis of Lake Changes by Synthesizing the Reconstructed Area and Volume Variation Time Series and Prior Studies
5.3.1. Lake Athabasca
5.3.2. Caspian Sea
5.3.3. North Aral Sea
5.3.4. Lake Balkhash
5.3.5. Lake Issyk-Kul
6. Summary
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Palmer, S.C.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote. Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Awange, J.; Saleem, A.; Sukhadiya, R.; Ouma, Y.; Kexiang, H. Physical dynamics of Lake Victoria over the past 34 years (1984–2018): Is the lake dying? Sci. Total Environ. 2019, 658, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Sima, S.; Ahmadalipour, A.; Tajrishy, M. Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sens. Environ. 2013, 136, 374–385. [Google Scholar] [CrossRef]
- Pekel, C.; Gorelick, B. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leblanc, M.; Leduc, C.; Razack, M.; Lemoalle, J.; Dagorne, D.; Mofor, L. Applications of Remote Sensing and GIS for Groundwater Modelling of Large Semiarid Areas: Example of the Lake Chad Basin, Africa; International Association of Hydrological Sciences: Wallingford, UK, 2003; pp. 186–192. [Google Scholar]
- Peters, D.L.; Buttle, J.M. The effects of flow regulation and climatic variability on obstructed drainage and reverse flow contribution in a Northern river-lake-Delta complex, Mackenzie basin headwaters. River Res. Appl. 2010, 26, 1065–1089. [Google Scholar] [CrossRef]
- Kosarev, A.N.; ȊAblonskaȋa, E. The Caspian Sea; SPB Academic Publishing: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Dumont, H.J.N. Ecocide in the Caspian sea. Nature 1995, 377, 673–674. [Google Scholar] [CrossRef]
- Cazenave, A.; Bonnefond, P.; Dominh, K.; Schaeffer, P. Caspian sea level from Topex-Poseidon altimetry: Level now falling. Geophys. Res. Lett. 1997, 24, 881–884. [Google Scholar] [CrossRef]
- Rodionov, S. Global and Regional Climate Interaction: The Caspian Sea Experience; Springer Science & Business Media: Berlin, Germany, 2012; Volume 11. [Google Scholar]
- Micklin, P. The past, present, and future Aral Sea. Lakes Reserv. Res. Manag. 2010, 15, 193–213. [Google Scholar] [CrossRef]
- Micklin, P.P.; Studies, E.E. The water management crisis in Soviet Central Asia. Carl Beck Pap. Russ. East Eur. Stud. 1991. [Google Scholar] [CrossRef]
- Propastin, P.A. Simple model for monitoring Balkhash Lake water levels and Ili River discharges: Application of remote sensing. Lakes Reserv. Res. Manag. 2008, 13, 77–81. [Google Scholar] [CrossRef]
- Petr, T. Lake Balkhash, Kazakhstan. J. Salt Lake Res. 1992, 1, 21–46. [Google Scholar] [CrossRef]
- Herdendorf, C.E. Distribution of the World’s Large Lakes. In Brock/Springer Series in Contemporary Bioscience; Springer Science and Business Media: Berlin, Germany, 1990; pp. 3–38. [Google Scholar]
- Romanovsky, V.V. The Natural Complex of Lake Issyk-Kul; Academy Nauk Kyrgyzstan (in Russian), Frunze Ilim: Petersburg, Russia, 1990. [Google Scholar]
- Peeters, F.; Finger, D.; Hofer, M.; Brennwald, M.; Livingstone, D.M.; Kipfer, R. Deep-water renewal in Lake Issyk-Kul driven by differential cooling. Limnol. Oceanogr. 2003, 48, 1419–1431. [Google Scholar] [CrossRef] [Green Version]
- Crétaux, J.-F.; Birkett, C. Lake studies from satellite radar altimetry. Comptes Rendus Geosci. 2006, 338, 1098–1112. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.-C.; Nino, F.; Del Rio, R.A.; Cazenave, A.; et al. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L. Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multi-mission satellite altimetry. Hydrol. Process. 2015, 29, 2769–2781. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Calmant, S.; Romanovski, V.; Shabunin, A.; Lyard, F.; Bergé-Nguyen, M.; Cazenave, A.; Hernandez, F.; Perosanz, F. An absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia. J. Geod. 2009, 83, 723–735. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Tong, T.S.D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 2014, 152, 251–269. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Song, C.; Sheng, Y.; Wang, J.; Ke, L.; Madson, A.; Nie, Y. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology 2016, 280, 30–38. [Google Scholar] [CrossRef]
- Abileah, R.; Vignudelli, S.; Scozzari, A. A completely remote sensing approach to monitoring reservoirs water volume. Int. Water Technol. J. 2011, 1, 63–77. [Google Scholar]
- Peace-Athabasca Delta Technical Studies Steering Committee. Peace-Athabasca Delta Technical Studies: Final Report; Peace-Athabasca Delta Technical Studies Steering Committee: Fort Chipewyan, AB, Canada, 1996. [Google Scholar]
- Northern River Basins Study: Report to the Ministers, 1996; Northern River Basins Study: Edmonton, AB, Canada, 1996.
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef]
- Chen, J.; Pekker, T.; Wilson, C.; Tapley, B.; Kostianoy, A.; Cretaux, J.F.; Safarov, E. Long-term Caspian Sea level change. Geophys. Res. Lett. 2017, 44, 6993–7001. [Google Scholar] [CrossRef]
- Özyavaş, A.; Khan, S.D. Assessment of Recent Short-Term Water-Level Fluctuations in Caspian Sea Using Topex/Poseidon. IEEE Geosci. Remote Sens. Lett. 2008, 5, 720–724. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Kostianoy, A.G.; Lebedev, S.A. Ice cover and sea level of the Aral Sea from satellite altimetry and radiometry (1992–2006). J. Mar. Syst. 2009, 76, 272–286. [Google Scholar] [CrossRef]
- Letolle, R.; Chesterikoff, A. Salinity of surface waters in the Aral Sea region. Int. J. Salt Lake Res. 1999, 8, 293–306. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Yang, L.; Fang, H. Monitoring variations of inland lakes in the arid region of Central Asia. Front. Earth Sci. 2012, 6, 147–156. [Google Scholar] [CrossRef]
- Kezer, K.; Matsuyama, H. Decrease of river runoff in the Lake Balkhash basin in Central Asia. Hydrol. Process. 2006, 20, 1407–1423. [Google Scholar] [CrossRef]
- Au, A.Y.; Boy, J.-P.; Cox, C.M.; Chao, B.F.; Boy, J. Time-variable gravity signal of an anomalous redistribution of water mass in the extratropic Pacific during 1998–2002. Geochem. Geophys. Geosyst. 2003, 4, 4. [Google Scholar]
- Propastin, P. Patterns of Lake Balkhash water level changes and their climatic correlates during 1992–2010 period. Lakes Reserv. Res. Manag. 2012, 17, 161–169. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Ye, Q. Precipitation variability in High Mountain Asia from multiple datasets and implication for water balance analysis in large lake basins. Glob. Planet. Chang. 2016, 145, 20–29. [Google Scholar] [CrossRef]
- Klerx, J.; Imanackunov, B. Lake Issyk-Kul: Its Natural Environment; Springer Science & Business Media: Berlin, Germany, 2002; Volume 13. [Google Scholar]
Lake Name | Latitude Range | Longitude Range | Landsat Path/Row |
---|---|---|---|
Lake Athabasca | 58°35′31′′ N–59°37′37′′ N | 106°30′29′′ W–111°11′59′′ W | 40/19, 41/18, 41/19 |
Caspian Sea | 36°34′05′′ N–47°08′51′′ N | 46°43′58′′E–54°04′21′′E | 166/28 |
North Aral Sea | 46°07′20′′ N–46°47′08′′ N | 59°58′34′′E–61°32′51′′E | 161/27, 161/28, 160/28 |
Lake Balkhash | 45°02′54′′ N–46°50′04′′ N | 73°23′48′′E–79°14′54′′E | 149/27, 149/28, 148/28 |
Lake Issyk-Kul | 42°09′04′′ N–42°46′16′′ N | 76°10′58′′E–78°19′41′′E | 149/30 |
Satellite | Altimeter | Revisit Cycle (Days) | Along-Track Spacing | Cross-Track Space (at the Equator) | Operational |
---|---|---|---|---|---|
Topex/Poseidon | Poseidon | 10 | ~600 m–7 km | 350 km | 1992–2006 |
GFO | GFO-RA | 17 | ~7 km | 170 km | 1998–2008 |
ENVISAT | RA2 | 30/35 | ~390 m–7 km | 80 km | 2002–2012 |
Jason-1 | Poseidon-2 | 10 | ~300 m–7 km | 350 km | 2001–2013 |
Jason-2 | Poseidon-3 | 10 | ~300 m–7 km | 350 km | 2008– |
Jason-3 | Poseidon-3B | 10 | ~300 m–7 km | 350 km | 2015– |
SARAL | AltiKa | 17 | ~175 m | 75 km | 2013– |
Sentinel-3A | SRAL | 27 | ~300 m | 104 km | 2015– |
Lake Name | Water Surface Height from Satellite Altimetry & Track Number |
---|---|
Lake Athabasca | Topex/Poseidon (95/171/178/254), Jason-1,2,3 (95/178/254), GFO (93/142/179/228), ENVISAT (37/140/226/323/409/495/ 598/684/867/953), SARAL (140/226/409/495/598/684/867/953), Sentinel-3A (54/265/493/607/710) |
Caspian Sea | Topex/Poseidon (16/31/57/92/107/133/168), Jason-1,2,3(16/31/57/92/133/168/ 209/244), GFO (42/53/70/128/139/214/225/300/311/386/397/444/455/472/483), ENVISAT (3/12/25/98/139/184/225/270/311/356/397/470/483/556/597/642/683/728/769/ 814/855/900/928/941), SARAL (98/184/225/270/311/397/483/556/642/728/769/855/928/941), Sentinel-3A (12/126/139/167/212/240/ 253/326/354/367/ 440/481/554/595/668/709) |
North Aral Sea | Topex/Poseidon (107/218), Jason-1,2(107/218), ENVISAT (126/167/625) |
Lake Balkhash | Topex/Poseidon (55/90/166/233/242), Jason-1,2,3(55/90/166/233), ENVISAT (51/96/137/182/223/268/309/395/554/595/640/681/726/767/812/853), SARAL (51/96/137/182/223/268/309/395/554/595/681/726/767/853), Sentinel-3A(51/96/165/210/279/324/365/479/552/593/666/707) |
Lake Issyk-Kul | Topex/Poseidon (131), Jason-1,2,3(131), ENVISAT (10/223/554/767), SARAL (10/223/554/767), Sentinel-3A (10/593/666/707) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Song, C.; Liu, K.; Ke, L.; Ma, R. An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes. Sensors 2019, 19, 4247. https://doi.org/10.3390/s19194247
Luo S, Song C, Liu K, Ke L, Ma R. An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes. Sensors. 2019; 19(19):4247. https://doi.org/10.3390/s19194247
Chicago/Turabian StyleLuo, Shuangxiao, Chunqiao Song, Kai Liu, Linghong Ke, and Ronghua Ma. 2019. "An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes" Sensors 19, no. 19: 4247. https://doi.org/10.3390/s19194247
APA StyleLuo, S., Song, C., Liu, K., Ke, L., & Ma, R. (2019). An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes. Sensors, 19(19), 4247. https://doi.org/10.3390/s19194247