Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network
<p>Sample images of 10 leaf diseases. (<b>1</b>) Apple healthy (AH); (<b>2</b>) Apple Scab general (ASG); (<b>3</b>) Apple Scab serious (ASS); (<b>4</b>) Apple Frogeye Spot (AFS); (<b>5</b>) Cedar Apple Rust genera (CARG)l; (<b>6</b>) Cedar Apple Rust serious (CARS); (<b>7</b>) Cherry healthy (CH); (<b>8</b>) Cherry Powdery Mildew general (CPMG); (<b>9</b>) Cherry Powdery Mildew serious (CPMS); (<b>10</b>) Corn healthy (CH).</p> "> Figure 2
<p>The structure of the proposed convolutional neural network (CNN).</p> "> Figure 3
<p>Inception structure model.</p> "> Figure 4
<p>Comparison of the fully connected layer and the global averaged pooled layer.</p> "> Figure 5
<p>Squeeze-and-Excitation (SE) module.</p> "> Figure 6
<p>The combined structure of the SE module and the Inception structure.</p> "> Figure 7
<p>Trends in the accuracy of different CNN models on the test set.</p> "> Figure 8
<p>Trend graph of the loss function (<b>a</b>) and confusion matrix (<b>b</b>). (<b>1</b>) Apple healthy (AH); (<b>2</b>) Apple Scab general (ASG); (<b>3</b>) Apple Scab serious (ASS); (<b>4</b>) Apple Frogeye Spot (AFS); (<b>5</b>) Cedar Apple Rust genera (CARG)l; (<b>6</b>) Cedar Apple Rust serious (CARS); (<b>7</b>) Cherry healthy (CH); (<b>8</b>) Cherry Powdery Mildew general (CPMG); (<b>9</b>) Cherry Powdery Mildew serious (CPMS); (<b>10</b>) Corn healthy (CH).</p> "> Figure 9
<p>Visualization of feature map from each layer for a sample leaf. (<b>1</b>) conv1_1 (see <a href="#sensors-19-04161-t002" class="html-table">Table 2</a>), (<b>2</b>) conv3_1, (<b>3</b>) conv5_1, (<b>4</b>) inception_ 1 × 1, (<b>5</b>) inception_ 3 × 3, (<b>6</b>) inception_ 5 × 5, (<b>7</b>) inception_ pool, (<b>8</b>) pool7.</p> ">
Abstract
:1. Introduction
- (1)
- Limited by experimental conditions, such as current platform and hardware, a large CNN network will cost a long training time and have a slow convergence rate;
- (2)
- Long training convergence time will cause the final classification accuracy to decrease.
2. Materials and Methods
2.1. Data Preprocessing and Augmentation
2.2. Convolutional Neural Network (CNN)-Based Method
2.2.1. CNN Overall Architecture
2.2.2. GoogLeNet’s Inception
2.2.3. Global Average Pooling (GAP)
2.2.4. Squeeze-and-Excitation Module
3. Experiments and Results
3.1. Effects of the Feature Extraction Network
3.2. Comparison of Model Size for Different Network Models
3.3. Comparison of Training Time for Different Network Models
3.4. Loss Function and Confusion Matrix of Our Network
3.5. Visualization of Feature Extraction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Es-Saady, Y.; Massi, I.E.; Yassa, M.E.; Mammass, D.; Benazoun, A. Automatic Recognition of Plant Leaves Diseases Based on Serial Combination of Two SVM Classifiers. In Proceedings of the 2nd International Conference on Electrical and Information Technologies, Xi’an, China, 2–4 December 2016; pp. 561–566. [Google Scholar]
- Gavhale, M.K.R.; Gawande, U. An Overview of the Research on Plant Leaves Disease Detection Using Image Processing Techniques. IOSR J. Comput. Eng. 2014, 16, 10–16. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Y.; Wang, J.X. Automatic Image Based Plant Disease Severity Estimation Using Deep Learning. Comput. Intell. Neurosci. 2017, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Ma, X.D. The Method of Recognition of Damage by Disease and Insect Based on Laminae. J. Agric. Mech. Res. 2009, 6, 41–43. [Google Scholar]
- Tian, Y.W.; Li, T.L.; Li, C.H. Method for Recognition of Grape Disease Based on Support Vector Machine. Trans. Chin. Soc. Agric. Eng. 2007, 23, 175–180. [Google Scholar]
- Wang, X.F.; Zhang, S.W.; Wang, Z. Recognition of Cucumber Diseases Based on Leaf Image and Environmental Information. Trans. Chin. Soc. Agric. Eng. 2014, 30, 148–153. [Google Scholar]
- Zhang, S.W.; Shang, Y.J.; Wang, L. Plant Disease Recognition Based on Plant Leaf Image. J. Anim. Plant Sci. 2015, 25, 42–45. [Google Scholar]
- Ron, B.; Yael, E. Human-robot collaborative site-specific sprayer. J. Field Robot. 2017, 34, 1519–1530. [Google Scholar]
- David, R.; Javier, M.M.; Emir, M. 3D Imaging with a Sonar Sensor and an Automated 3-Axes Frame for Selective Spraying in Controlled Conditions. J. Imaging 2017, 3, 9. [Google Scholar] [Green Version]
- Xie, C.; Wang, R.; Zhang, J.; Chen, P.; Dong, W.; Li, R.; Chen, T.; Chen, H. Multi-level learning features for automatic classification of field crop insects. Comput. Electron. Agric. 2018, 152, 233–241. [Google Scholar] [CrossRef]
- Sindhuja, S.; Ashish, M.; Reza, E. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar]
- Li, W.; Chen, P.; Wang, B.; Xie, C. Automatic Localization and Count of Agricultural Crop Pests Based on an Improved Deep Learning Pipeline. Sci. Rep. 2019, 9, 7024. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shu, J.Y.; Nian, Y.Z.; Yu, R.L.; Yong, Z. Identification of Rice Diseases Using Deep Convolutional Neural Networks. Neurocomputing 2017, 267, 378–384. [Google Scholar]
- Xia, D.; Chen, P.; Wang, B.; Zhang, J.; Xie, C. Insect detection and classification based on improved convolutional neural network. Sensors 2018, 18, 4169. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Tan, W.J.; Mao, H.P.; Wu, X.H.; Chen, Y.; Wang, L. Identification of Leaf Diseases of Various Plants Based on Improved Convolutional Neural Network. Agric. Eng. Newsp. 2017, 19, 209–215. [Google Scholar]
- Mark, E.; Luc, V.G.; Christopher, K.I.; Williams, J.; Winn, A.Z. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A Large Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2012, 115, 211–252. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Available online: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (accessed on 25 September 2019).
- Simonyan, K.; Zisserman, A.; Bengio, Y.; LeCun, Y. (Eds.) Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 770–778. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. arXiv 2017, arXiv:1709.01507. [Google Scholar]
- Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional Architecture for Fast Feature Embedding; Cornell University: Ithaca, NY, USA, 2014. [Google Scholar]
Class | Number of Training Images (Before Data Augmentation) | Number of Training Images (After Data Augmentation) | Number of Testing Images |
---|---|---|---|
Apple healthy | 1185 | 1185 | 169 |
Apple Scab general | 844 | 844 | 30 |
Apple Scab serious | 596 | 596 | 22 |
Apple Frogeye Spot | 427 | 427 | 61 |
Cedar Apple Rust general | 142 | 142 | 20 |
Cedar Apple Rust serious | 40 | 160 | 11 |
Cherry healthy | 598 | 598 | 85 |
Cherry Powdery Mildew general | 162 | 648 | 35 |
Cherry Powdery Mildew serious | 153 | 612 | 33 |
Corn healthy | 376 | 376 | 54 |
Total | 4523 | 5588 | 520 |
Type | Size/Stride | Output Size |
---|---|---|
Conv1 (Convolutional layer 1) | 3 × 3/1 | 64 × 224 × 224 |
Pool1/max | 3 × 3/1 | 64 × 112 × 112 |
Conv2 | 3 × 3/1 | 128 × 112 × 112 |
Pool2/max | 3 × 3/1 | 128 × 56 × 56 |
Conv3 | 3 × 3/1 | 256 × 56 × 56 |
Pool3/max | 3 × 3/1 | 256 × 28 × 28 |
Conv4 | 3 × 3/1 | 512 × 28 × 28 |
Pool4/max | 3 × 3/1 | 512 × 14 × 14 |
Conv5 | 3 × 3/1 | 512 × 14 × 14 |
Pool5/max | 3 × 3/1 | 512 × 7 × 7 |
Pool6/max | 3 × 3/1 | 512 × 3 × 3 |
Inception | - | 256 × 3 × 3 |
Pool7/ave | 3 × 3/1 | 256 × 1 × 1 |
Dropout | - | 256 × 1 × 1 |
Linear | - | 10 × 1 × 1 |
Softmax | - | 10 |
CNN | Accuracy | Model Size | Training Time |
---|---|---|---|
AlexNet | 0.894 | 217 MB | 1140.15 s |
GoogLeNet | 0.898 | 47.1 MB | 332.228 s |
VGG16 | 0.905 | 537.2 MB | 1960.2 s |
VGG19 | 0.903 | 558.4 MB | 5411.31 s |
ResNet-50 | 0.901 | 94.3 MB | 2101.19 s |
Inceptionv2 | 0.903 | 45.1 MB | 2187.3 s |
Inceptionv3 | 0.901 | 87.4 MB | 6438.72 s |
Inceptionv4 | 0.89 | 165 MB | 5787.9 s |
SENet | 0.875 | 220.8 MB | 1794.78 s |
Our method | 0.917 | 57.3 MB | 961.1 s |
CNN | Forward Pass | Backward Pass | Total Time |
---|---|---|---|
AlexNet | 0.052 s | 0.061 s | 1140.15 s |
GoogLeNet | 0.013 s | 0.019 s | 332.228 s |
VGG16 | 0.047 s | 0.014 s | 1960.2 s |
VGG19 | 0.167 s | 0.371 s | 5411.31 s |
ResNet-50 | 0.096 s | 0.114 s | 2101.19 s |
Inceptionv2 | 0.102 s | 0.117 s | 2187.3 s |
Inceptionv3 | 0.301 s | 0.342 s | 6438.72 s |
Inceptionv4 | 0.258 s | 0.321 s | 5787.9 s |
SENet | 0.116 s | 0.179 s | 1794.78 s |
Our method | 0.038 s | 0.053 s | 961.1 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, J.; Zhang, D.; Chen, P.; Zhang, J.; Wang, B. Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network. Sensors 2019, 19, 4161. https://doi.org/10.3390/s19194161
Hang J, Zhang D, Chen P, Zhang J, Wang B. Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network. Sensors. 2019; 19(19):4161. https://doi.org/10.3390/s19194161
Chicago/Turabian StyleHang, Jie, Dexiang Zhang, Peng Chen, Jun Zhang, and Bing Wang. 2019. "Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network" Sensors 19, no. 19: 4161. https://doi.org/10.3390/s19194161
APA StyleHang, J., Zhang, D., Chen, P., Zhang, J., & Wang, B. (2019). Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network. Sensors, 19(19), 4161. https://doi.org/10.3390/s19194161