SAR and Optical Data Comparison for Detecting Co-Seismic Slip and Induced Phenomena during the 2018 Mw 7.5 Sulawesi Earthquake
<p>Overview on landmass and tectonic settings of Sulawesi island. Solid lines are the main tectonic structures crossing the island retrieved by the Global Earthquake Model (GEM) Global Active Faults project [<a href="#B16-sensors-19-03976" class="html-bibr">16</a>]. The yellow star indicates the epicenter of the M<sub>w</sub> 7.5 2018 Sulawesi earthquake occurred on the western part of Central Sulawesi district. The focal mechanism is retrieved by the United States Geological Survey (USGS) [<a href="#B5-sensors-19-03976" class="html-bibr">5</a>].</p> "> Figure 2
<p>Wrapped interferogram retrieved by Sentinel-1 (<b>A</b>) and ALOS-2 (<b>B</b>) data. Each color cycle represents a LoS displacement equal to λ/2. The figure highlights the unsuitability of C-band sensors to capture high spatial rates of deformation as in the case of the Sulawesi earthquake. Solid lines are the main tectonic structures crossing the island retrieved by the GEM Global Active Faults project [<a href="#B16-sensors-19-03976" class="html-bibr">16</a>]. The dashed line is the unmapped segment of the Palu-Koro fault that ruptured during the seismic event. The yellow star indicates the epicenter of the Mw 7.5 2018 Sulawesi earthquake occurred on the western part of Central Sulawesi district.</p> "> Figure 3
<p>Focus on L-band interferogram in the proximity of Palu-Koro fault rupture trace.</p> "> Figure 4
<p>Pixel Offset Tracking (POT) Azimuth displacement retrieved by C-band Sentinel-1 (<b>A</b>) and L-band ALOS-2 (<b>B</b>) Synthetic Aperture Radar (SAR) data. Solid lines are the main tectonic structures crossing the island retrieved by the GEM Global Active Faults project [<a href="#B16-sensors-19-03976" class="html-bibr">16</a>]. The dashed line is the unmapped segment of the Palu-Koro fault that ruptured during the seismic event. The yellow star represents the epicenter of the M<sub>w</sub> 7.5 earthquake. The background image is the Digital Elevation Model (DEM) provided by the Shuttle Radar Topography Mission (SRTM) [<a href="#B17-sensors-19-03976" class="html-bibr">17</a>].</p> "> Figure 5
<p>N–S displacement retrieved by C-band Sentinel-2 data. Solid lines are the main tectonic structures crossing the island retrieved by the GEM Global Active Faults project [<a href="#B16-sensors-19-03976" class="html-bibr">16</a>]. The dashed line is the unmapped segment of the Palu-Koro fault that ruptured during the seismic event. The yellow star represents the epicenter of the M<sub>w</sub> 7.5 earthquake. The background image is the DEM provided by SRTM mission [<a href="#B17-sensors-19-03976" class="html-bibr">17</a>]. The white rectangle is used to carry out the zonal statistics in <a href="#sensors-19-03976-t001" class="html-table">Table 1</a>.</p> "> Figure 6
<p>Data profiles showing ground deformations by Sentinel-1 (red), ALOS-2 (black), and Sentinel-2 (green) along AA’, BB’, and CC’ transects. The background maps are the displacement fields retrieved by Sentinel-1 (<b>A</b>), ALOS-2 (<b>B</b>), and Sentinel-2 (<b>C</b>) data.</p> "> Figure 7
<p>The Palu IV bridge destroyed by the M<sub>w</sub> 7.5 seismic event and the following tsunami (modified from <a href="https://www.nytimes.com/2018/09/30/world/asia/indonesia-tsunami-science.html" target="_blank">https://www.nytimes.com/2018/09/30/world/asia/indonesia-tsunami-science.html</a>).</p> "> Figure 8
<p>Data comparison for detecting the landslides activated by the M<sub>w</sub> 7.5 2018 Sulawesi earthquake close to the Palu airport. Upper panels show the pre-seismic image for Sentinel-1 (<b>A</b>), ALOS-2 (<b>B</b>) and Sentinel-2 (<b>C</b>) data. The central panels refer to the Sentinel-1 (<b>D</b>) ALOS-2 (<b>E</b>) and Sentinel-2 (<b>F</b>) post-seismic images whereas the bottom ones show the products of data processing technique applied on Sentinel-1 (<b>G</b>), ALOS-2 (<b>H</b>) and Sentinel-2 (<b>I</b>) data. The red polygon represents the affected area (see <a href="#sensors-19-03976-f010" class="html-fig">Figure 10</a>).</p> "> Figure 9
<p>Data comparison for constraining the landslides activated by the M<sub>w</sub> 7.5 2018 Sulawesi earthquake in the eastern outskirts of the Palu city. Upper panels show the pre-seismic image for Sentinel-1 (<b>A</b>), ALOS-2 (<b>B</b>) and Sentinel-2 (<b>C</b>) data. The central panels refer to the Sentinel-1 (<b>D</b>), ALOS-2 (<b>E</b>) and Sentinel-2 (<b>F</b>) post-seismic images whereas the bottom ones show the products of data processing technique applied on Sentinel-1 (<b>G</b>), ALOS-2 (<b>H</b>) and Sentinel-2 (<b>I</b>) data. The red polygon represents the affected area (see <a href="#sensors-19-03976-f010" class="html-fig">Figure 10</a>).</p> "> Figure 10
<p>Landslides captured by Sentinel-2 data in RGB color representation. Pre- (<b>A</b>) and post-seismic (<b>B</b>) image.</p> "> Figure 11
<p>Sentinel-1 pre- (<b>A</b>) and post-seismic (<b>B</b>) intensity SAR images showing the Palu IV bridge collapse.</p> "> Figure 12
<p>Pre- (<b>A</b>,<b>C</b>) and post-seismic (<b>B</b>,<b>D</b>) Sentinel-2 optical images. The coastline retreat is clearly visible in red polygons. The white ellipse indicates the small island at the river mouth completely disappeared in the post-seismic images.</p> "> Figure 13
<p>Comparison between Sentinel-1 SAR (<b>A</b>,<b>C</b>) data and Sentinel-2 optical intensity images (<b>B</b>,<b>D</b>). Pre- (<b>A</b>,<b>B</b>) and post-event (<b>C</b>,<b>D</b>) images. Solid lines are the main tectonic structures crossing the island retrieved by the GEM Global Active Faults project [<a href="#B16-sensors-19-03976" class="html-bibr">16</a>]. The dashed line is the unmapped segment of the Palu-Koro fault that ruptured during the seismic event.</p> ">
Abstract
:1. Introduction
2. SAR Data
2.1. InSAR Outcomes
2.2. POT Outcomes
3. Optical Data
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sassa, S.; Takagawa, T. Liquefied gravity flow-induced tsunami: First evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides 2019, 16, 195–200. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Muhari, A.; Wijanarto, A.B. Insights on the Source of the 28 September 2018 Sulawesi Tsunami, Indonesia Based on Spectral Analyses and Numerical Simulations. Pure Appl. Geophys. 2019, 176, 25–43. [Google Scholar] [CrossRef]
- Omira, R.; Dogan, G.G.; Hidayat, R.; Husrin, S.; Prasetya, G.; Annunziato, A.; Proietti, C.; Probst, P.; Paparo, M.A.; Wronna, M.; et al. The September 28th, 2018, Tsunami In Palu-Sulawesi, Indonesia: A Post-Event Field Survey. Pure Appl. Geophys. 2019, 176, 1379–1395. [Google Scholar] [CrossRef]
- Carvajal, M.; Araya-Cornejo, C.; Sepulveda, I.; Melnick, D.; Haase, J.S. Nearly instantaneous tsunamis following the Mw 7.5 2018 Palu earthquake. Geophys. Res. Lett. 2019, 46, 5117–5126. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Available online: https://earthquake.usgs.gov/ (accessed on 18 December 2018).
- Wallace, L.M.; Stevens, C.; Silver, E.; McCaffrey, R.; Loratung, W.; Hasiata, S.; Stanaway, R.; Curley, R.; Rosa, R.; Taugaloidi, J. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone. J. Geophys. Res.: Sol. Ea. 2004, 109, B5. [Google Scholar] [CrossRef]
- Soquet, A.; Simons, W.; Vigny, C.; McCaffrey, R.; Subarya, C.; Sarsito, D.; Ambrosius, B.; Spakman, W. Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. J. Geophys. Res. Sol. Ea. 2006, 111, B8. [Google Scholar] [CrossRef]
- Walpersdorf, A.; Vigny, C. Monitoring of the Palu-Koro Fault (Sulawesi) by GPS. Geophys. Res. Lett. 1998, 25, 2313–2316. [Google Scholar] [CrossRef] [Green Version]
- Bellier, O.; Sebrier, M.; Beaudouin, T.; Villeneuve, M.; Braucher, R.; Bourles, D.; Siame, L.; Putranto, E.; Pratomo, I. High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia). Terra Nova 2001, 13, 463–470. [Google Scholar] [CrossRef]
- Watkinson, I.M.; Hall, R. Fault systems of the eastern Indonesian triple junction: Evaluation of Quaternary activity and implications for seismic hazards. Geol. Soc. SP. 2017, 441, 71–120. [Google Scholar] [CrossRef]
- Bao, H.; Ampuero, J.P.; Meng, L.; Fielding, E.J.; Liang, C.; Milliner, C.W.D.; Feng, T.; Huang, H. Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nat. Geosci. 2019, 200, 200–205. [Google Scholar] [CrossRef]
- Socquet, A.; Hollingsworth, J.; Pathier, E.; Bouchon, M. Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat. Geosci. 2019, 12, 192–199. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Gray, A.; Mattar, K.E.; Vachon, P.W. InSAR results from the RADARSAT Antarctic mapping mission data: Estimation of glacier motion using a simple registration procedure. In Proceedings of the Geoscience and Remote Sensing (IGARSS), IEEE International Symposium, Seattle, WA, USA, 6–10 July 1998. [Google Scholar]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- GEM Global Active Faults. Available online: https://blogs.openquake.org/hazard/ (accessed on 13 March 2019).
- Shuttle Radar Topography Mission (SRTM). Available online: https://www2.jpl.nasa.gov/srtm/ (accessed on 11 January 2019).
- Wegmuller, U.; Werner, C. Gamma SAR processor and interferometry software. In Proceedings of the ERS Symposium on Space at the Service of Our Environment, Florence, Italy, 14–21 March 1997; ESA Publications Division: Florence, Italy, 1997; pp. 1687–1692. [Google Scholar]
- Goldstein, R.; Werner, C. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Zhang, Y.; Shan, X.; Liu, Y.; Gong, W.; Qu, C. Geodetic observations of the 2018 Mw 7.5 Sulawesi earthquake and its implications for the kinematics of the Palu fault. Geophys. Res. Lett. 2019, 46, 4212–4220. [Google Scholar] [CrossRef]
- Fang, J.; Xu, C.; Wen, Y.; Wang, S.; Xu, G.; Zhao, Y.; Yi, L. The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms. Remote Sens. 2019, 11, 1330. [Google Scholar] [CrossRef]
- Merryman Boncori, J.P.M. Measuring coseismic deformation with spaceborn synthetic aperture radar: A review. Front. Earth Sci. 2019, 7, 1–21. [Google Scholar] [CrossRef]
- Pritchard, H.; Murray, T.; Luckman, A.; Strozzi, T.; Barr, S. Glacier surge dynamics of Sortebræ, east Greenland, from synthetic aperture radar feature tracking. J. Geophys. Res. 2005, 110, F3. [Google Scholar] [CrossRef]
- Geohazards Exploitation Platform (GEP). Available online: https://geohazards-tep.eu/ (accessed on 5 January 2019).
- Stumpf, A.; Malet, J.P.; Delacourt, C. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sens. Environ. 2017, 189, 40–55. [Google Scholar] [CrossRef]
- Twitter. Available online: https://twitter.com/vulkanologi_mbg/status/1050396131216175105 (accessed on 11 October 2018).
- AGU Blogs. Available online: https://blogs.agu.org/landslideblog/2018/10/02/ (accessed on 17 February 2019).
- NASA Earth Observatory. Available online: https://earthobservatory.nasa.gov/images/92836/ (accessed on 25 February 2019).
- Paulik, R.; Gusman, A.; Williams, J.H.; Pratama, G.M.; Lin, S.-L.; Prawirabhakti, A.; Sulendra, K.; Zachari, M.Y.; Fortuna, Z.E.D.; Layuk, N.B.P.; et al. Tsunami Hazard and Built Environment Damage Observations from Palu City after the September 28 2018 Sulawesi Earthquake and Tsunami. Pure Appl. Geophys. 2019, 1–17. [Google Scholar] [CrossRef]
- Widiyanto, W.; Santoso, P.B.; Hsiao, S.-C.; Imananta, R.T. Post-event Field Survey of 28 September 2018 Sulawesi Earthquake and Tsunami. Nat. Hazards Earth Syst. Sci. 2019, 1, 1–23. [Google Scholar] [CrossRef]
- The Guardian. Available online: https://www.theguardian.com/world/ng-interactive/2018/oct/01/indonesia-sulawesi-palu-earthquake-tsunami-map-visual (accessed on 13 March 2019).
- EMSC. Available online: https://www.emsc-csem.org/Files/news/Earthquakes_reports/Palu_earthquake_EMSC_report_19-10-2018.pdf (accessed on 20 December 2018).
- Rupnik, E.; Daakir, M.; Pierrot-Deseilligny, M. MicMac—A free, open-source solution for photogrammetry. Open Geosp. Data, Soft. Stand. 2017, 2. [Google Scholar] [CrossRef]
- Ayoub, F.; Leprince, L.; Avouac, J.-P. User’s Guide to COSI-CORR: Co-registration of Optically Sensed Images and Correlation (California Institute of Technology, 2015). Available online: http://www.tectonics.caltech.edu/slip_history/spot_coseis/pdf_files/CosiCorr-Guide2017.pdf (accessed on 15 January 2019).
- Debella-Gilo, M.; Kääb, A. Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 2011, 115, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Copernicus-Europe’s Eyes on Earth. Available online: https://www.copernicus.eu/en (accessed on 4 April 2019).
Satellite | Mean [m] | Min [m] | Max [m] | σ [m] |
---|---|---|---|---|
ALOS-2 | 0.40 | −4.73 | 5.88 | 1.62 |
Sentinel-1 | 0.43 | −4.15 | 4.70 | 1.90 |
Sentinel-2 | 0.31 | −4.8 | 6.5 | 1.49 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polcari, M.; Tolomei, C.; Bignami, C.; Stramondo, S. SAR and Optical Data Comparison for Detecting Co-Seismic Slip and Induced Phenomena during the 2018 Mw 7.5 Sulawesi Earthquake. Sensors 2019, 19, 3976. https://doi.org/10.3390/s19183976
Polcari M, Tolomei C, Bignami C, Stramondo S. SAR and Optical Data Comparison for Detecting Co-Seismic Slip and Induced Phenomena during the 2018 Mw 7.5 Sulawesi Earthquake. Sensors. 2019; 19(18):3976. https://doi.org/10.3390/s19183976
Chicago/Turabian StylePolcari, Marco, Cristiano Tolomei, Christian Bignami, and Salvatore Stramondo. 2019. "SAR and Optical Data Comparison for Detecting Co-Seismic Slip and Induced Phenomena during the 2018 Mw 7.5 Sulawesi Earthquake" Sensors 19, no. 18: 3976. https://doi.org/10.3390/s19183976
APA StylePolcari, M., Tolomei, C., Bignami, C., & Stramondo, S. (2019). SAR and Optical Data Comparison for Detecting Co-Seismic Slip and Induced Phenomena during the 2018 Mw 7.5 Sulawesi Earthquake. Sensors, 19(18), 3976. https://doi.org/10.3390/s19183976