MIMO Radar Accurate 3-D Imaging and Motion Parameter Estimation for Target with Complex Motions
<p>Geometry of MIMO radar array.</p> "> Figure 2
<p>The flow chart of proposed method.</p> "> Figure 3
<p>Distribution of scattering Points on the ship hull.</p> "> Figure 4
<p>3-D MIMO Radar Imaging Results. (<b>a</b>) is imaging result at <math display="inline"><semantics> <msub> <mi>t</mi> <mi>A</mi> </msub> </semantics></math>; (<b>b</b>) is imaging result at <math display="inline"><semantics> <msub> <mi>t</mi> <mi>B</mi> </msub> </semantics></math>.</p> "> Figure 5
<p>2-D projections of MIMO radar 3-D imaging results at <math display="inline"><semantics> <msub> <mi>t</mi> <mi>A</mi> </msub> </semantics></math>. (<b>a</b>) is projection in XY plane; (<b>b</b>) is projection in XZ plane. (<b>c</b>) is projection in YZ plane.</p> "> Figure 6
<p>2-D projections of MIMO radar 3-D imaging results at <math display="inline"><semantics> <msub> <mi>t</mi> <mi>B</mi> </msub> </semantics></math>. (<b>a</b>) is projection in XY plane; (<b>b</b>) is projection in XZ plane; (<b>c</b>) is projection in YZ plane.</p> "> Figure 7
<p>Error performance of 3-D imaging. (<b>a</b>) is the comparison with MIMO-ISAR method and modified OMP method; (<b>b</b>) is the comparison with SACR-iMAP method and S-TLS method.</p> "> Figure 8
<p>Error performance of motion estimation results. (<b>a</b>) is the comparison of roll angular velocity; (<b>b</b>) is the comparison of pitch angular velocity; (<b>c</b>) is the comparison of yaw angular velocity.</p> "> Figure 9
<p>Error performance of proposed method with 500 Monte Carlo experiments. (<b>a</b>) is the error curve of 3-D localization; (<b>b</b>) is the error curve of motion parameters estimation.</p> ">
Abstract
:1. Introduction
2. MIMO Radar Signal Model
2.1. Multi-Dimensional Echo Model
2.2. Joint 2-D Parameter Models
3. Accurate Imaging and Motion Estimations
3.1. 2-D Parameters Estimation without Basis Mismatch
3.2. Target 3-D Imaging with Motion Parameters Estimated
3.3. Pairing Correction
4. Simulation Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Proof of (5)
Appendix A.2. Proof of (10)
References
- Chen, V.; Li, F.; Ho, S.; Wechsler, H. Micro-Doppler effect in radar: phenomenon, model, and simulation study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 2–21. [Google Scholar] [CrossRef]
- Reed, A.; Mligram, J. Ship wakes and their radar images. Annu. Rev. Fluid Mech. 2002, 34, 469–502. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Yang, S.; Jiao, L. New Hierarchical Saliency Filtering for Fast Ship Detection in High-Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2016, 55, 351–362. [Google Scholar] [CrossRef]
- Liu, P.; Jin, Y. Simulation of Synthetic Aperture Radar Imaging of Dynamic Wakes of Submerged Body. IET Radar Sonar Navig. 2016, 11, 481–489. [Google Scholar] [CrossRef]
- Liu, P.; Jin, Y. A Study of Ship Rotation Effects on SAR Image. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3132–3144. [Google Scholar] [CrossRef]
- Li, Y.; Wu, R.; Xing, M.; Bao, Z. Inverse synthetic aperture radar imaging of ship target with complex motion. IET Radar Sonar Navig. 2008, 2, 395–403. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Wang, Y. Inverse synthetic aperture radar imaging of ship targets with complex motion based on match Fourier transform for cubic chirps model. IET Radar Sonar Navig. 2013, 7, 994–1003. [Google Scholar] [CrossRef]
- Zheng, J.; Su, T.; Zhang, L.; Zhu, W.; Liu, Q.H. ISAR Imaging of Targets With Complex Motion Based on the Chirp Rate–Quadratic Chirp Rate Distribution. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7276–7289. [Google Scholar] [CrossRef]
- Xu, G.; Xing, M.D.; Zhang, L.; Duan, J.; Chen, Q.Q.; Bao, Z. Sparse Apertures ISAR Imaging and Scaling for Maneuvering Targets. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2942–2956. [Google Scholar] [CrossRef]
- Xu, G.; Yang, L.; Bi, G.; Xing, M.D. Maneuvering target imaging and scaling by using sparse inverse synthetic aperture. Signal Process. 2017, 137, 149–159. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Dong, G.G.; Kuang, G.Y. Superresolution Downward-Looking Linear Array Three-Dimensional SAR Imaging Based on Two-Dimensional Compressive Sensing. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 2184–2196. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X. Three-Dimensional Interferometric ISAR Imaging for the Ship Target Under the Bi-Static Configuration. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 1505–1520. [Google Scholar] [CrossRef]
- Xu, G.; Xing, M. D.; Xia X., G.; Zhang, L.; Chen, Q.; Bao, Z. 3D Geometry and Motion Estimations of Maneuvering Targets for Interferometric ISAR With Sparse Aperture. IEEE Trans. Image Process. 2016, 25, 2005–2020. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X. F. 3-D Interferometric Inverse Synthetic Aperture Radar Imaging of Ship Target With Complex Motion. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3693–3708. [Google Scholar] [CrossRef]
- Fishler, E.; Haimovich, A.; Blum, R. MIMO radar: an idea whose time has come. In Proceedings of the IEEE Radar Conference, Philadelphia, PA, USA, 23–27 May 2004; pp. 71–78. [Google Scholar]
- Haimovich, A.; Blum, R.; Cimini, L. MIMO radar with widely separated antennas. IEEE Signal Process. Mag. 2008, 25, 116–129. [Google Scholar] [CrossRef]
- Ma, C.; Yeo, T.; Tan, C. Three-dimensional imaging of targets using collocated MIMO radar. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3009–3021. [Google Scholar] [CrossRef]
- Wang, D.; Chen, G.; Wu, N.; Ma, X. Y. Efficient target identification for MIMO high-resolution imaging radar via plane-rotation-invariant feature. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, UAE, 14–17 December 2009; pp. 350–354. [Google Scholar]
- Luo, Y.; He, J.; Liang, X.; Zhang, Q. Three-dimensional micro-doppler signature extraction in MIMO radar. In Proceedings of the International Conference on Signal Processing System, Dalian, China, 5–7 July 2010. [Google Scholar]
- Li, X.; Tian, B.; Feng, C.; Xu, X. Extration Micro-Doppler Feature of Precession Targets in OFDM Linear Frequence Modulation MIMO radar. In Proceedings of the 5th International Conference on Systems and Informatics (ICSAI), Nanjing, China, 10–12 November 2018; pp. 883–888. [Google Scholar]
- Ma, C.; Yeo, T.S.; Tan, C.S.; Li, J.; Shang, Y. Three-Dimensional Imaging Using Colocated MIMO Radar and ISAR Technique. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3189–3201. [Google Scholar] [CrossRef]
- Zhao, G.; Zhuang, Z.; Nie, L.; Fu, Y. Imaging and micro-Doppler analysis of vibrating target in multi-input–multi-output synthetic aperture radar. IET Radar Sonar Navig. 2015, 9, 1360–1365. [Google Scholar] [CrossRef]
- Pastina, D.; Santi, F.; Brucciarelli, M. MIMO Distributed Imaging of Rotating Targets for Improved 2-D Resolution. IEEE Trans. Geosci. Remote Sens. 2015, 12, 190–194. [Google Scholar] [CrossRef]
- Martinez, J.; Thurn, K.; Vossiek, M. MIMO radar for supporting automated rendezvous maneuvers with non-cooperative satellites. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 0497–0501. [Google Scholar]
- He, X.; Liu, C.; Liu, B.; Wang, D.J. Sparse Frequency Diverse MIMO Radar Imaging for Off-Grid Target Based on Adaptive Iterative MAP. Remote Sens. 2013, 5, 631–647. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Leus, G.; Giannakis, G.B. Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Trans. Signal Process. 2011, 59, 2002–2016. [Google Scholar] [CrossRef]
- Tang, G.; Bhaskar, B. N.; Shah, P.; Recht, B. Compressed Sensing Off the Grid. IEEE Trans. Inf. Theory 2013, 59, 7465–7490. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Yang, L.; Zhou, J. Super-resolution radar imaging using fast continuous compressed sensing. Electron. Lett. 2015, 51, 2043–2045. [Google Scholar]
- Hu, X.; Tong, N.; Zhang, Y.; He, X.; Wang, Y. Moving Target’s HRRP Synthesis With Sparse Frequency-Stepped Chirp Signal via Atomic Norm Minimization. IEEE Signal Process. Lett. 2016, 23, 1212–1215. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Stoica, P. Vandermonde Decomposition of Multilevel Toeplitz Matrices With Application to Multidimensional Super-Resolution. IEEE Trans. Inf. Theory 2016, 62, 3685–3701. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Transmitting elements number | 10 |
Receiving elements number | 10 × 10 |
Internal spacing of transmitting array | 3 m |
Internal spacing in row and column of receiving array | 4 m |
Coordinate of | (1 m, 0 m, 0 m) |
Coordinate of | (0 m, 0.5 m, 0.5 m) |
Carrier frequency | 35 GHz |
Sampling times | 30 |
Pulse width | 600 µs |
X distance | 5 km |
Y distance | 6 km |
Z distance | 7 km |
Values of Motion Parameters at | Values of Motion Parameters at | |
---|---|---|
Radial translation velocity (m/s) | 4.8 | 8.7 |
Angular velocity of pitch rotation (rad/s) | 0.1 | 0.3 |
Angular velocity of roll rotation (rad/s) | 0.2 | 0.4 |
Angular velocity of yaw rotation (rad/s) | 0.3 | 0.5 |
Estimation Results of Motion Parameters at | Estimation Results of Motion Parameters at | |
---|---|---|
Radial translation velocity (m/s) | 4.8252 | 8.6541 |
Angular velocity of pitch rotation (rad/s) | 0.1136 | 0.2879 |
Angular velocity of roll rotation (rad/s) | 0.2087 | 0.3897 |
Angular velocity of yaw rotation (rad/s) | 0.3201 | 0.5221 |
The Number of Transmitters | 5 | 10 | 15 | 20 | 25 | 30 |
Running Time (s) | 0.98 | 1.07 | 1.21 | 1.69 | 2.36 | 3.30 |
The Number of Samplings | 5 | 10 | 15 | 20 | 25 | 30 |
Running Time (s) | 0.84 | 0.96 | 1.17 | 1.50 | 2.19 | 2.98 |
The Number of Targets | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Running Time (s) | 0.72 | 0.80 | 0.84 | 0.90 | 0.94 | 1.02 | 1.05 | 1.14 | 1.30 | 1.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Wang, W.; Dong, F.; Huang, P. MIMO Radar Accurate 3-D Imaging and Motion Parameter Estimation for Target with Complex Motions. Sensors 2019, 19, 3961. https://doi.org/10.3390/s19183961
Hu Z, Wang W, Dong F, Huang P. MIMO Radar Accurate 3-D Imaging and Motion Parameter Estimation for Target with Complex Motions. Sensors. 2019; 19(18):3961. https://doi.org/10.3390/s19183961
Chicago/Turabian StyleHu, Ziying, Wei Wang, Fuwang Dong, and Ping Huang. 2019. "MIMO Radar Accurate 3-D Imaging and Motion Parameter Estimation for Target with Complex Motions" Sensors 19, no. 18: 3961. https://doi.org/10.3390/s19183961