An Artificial Vibrissa-Like Sensor for Detection of Flows †
<p>(<b>a</b>) Schematic drawing of the mystacial pad of a rat. A black dot corresponds to a single vibrissa, the vibrissae shafts are excluded from the illustration. (<b>b</b>) Change of the Reynolds number across the mystacial pad with respect to the mean diameter of each vibrissa and <math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>5</mn> <mspace width="0.166667em"/> <mfrac> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">s</mi> </mfrac> </mrow> </semantics></math>. Here, the Young’s modulus of the vibrissa is set to <math display="inline"><semantics> <mrow> <mn>3</mn> <mspace width="3.33333pt"/> <mspace width="0.166667em"/> <mi>GPa</mi> </mrow> </semantics></math>, the density of the vibrissa <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>1140</mn> <mspace width="0.166667em"/> <mfrac> <mi>kg</mi> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mfrac> </mrow> </semantics></math>, the density of air <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>1.2</mn> <mspace width="0.166667em"/> <mfrac> <mi>kg</mi> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mfrac> </mrow> </semantics></math> and the kinematic viscosity <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>1.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mspace width="0.166667em"/> <mfrac> <msup> <mi mathvariant="normal">m</mi> <mn>2</mn> </msup> <mi mathvariant="normal">s</mi> </mfrac> </mrow> </semantics></math> [<a href="#B41-sensors-19-03892" class="html-bibr">41</a>,<a href="#B42-sensors-19-03892" class="html-bibr">42</a>].</p> "> Figure 2
<p>(<b>a</b>) Cauchy number and (<b>b</b>) reduced velocity in modified form from [<a href="#B29-sensors-19-03892" class="html-bibr">29</a>]. (<b>c</b>) Natural frequency of the vibrissae across the mystacial pad. (<b>a</b>,<b>b</b>) consider the same parameters as in <a href="#sensors-19-03892-f001" class="html-fig">Figure 1</a>. Annulus markers correspond to inaccurate data.</p> "> Figure 3
<p>The mechanical/geometrical properties of the beam are described as follows: <span class="html-italic">E</span> as Young’s Modulus, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> as diameter depending on the arclength <span class="html-italic">s</span>, <math display="inline"><semantics> <mi>ϑ</mi> </semantics></math> as ratio of base diameter and tip diameter, <span class="html-italic">L</span> as length, <math display="inline"><semantics> <msub> <mi>c</mi> <mi>D</mi> </msub> </semantics></math> as drag coefficient and <math display="inline"><semantics> <mi>φ</mi> </semantics></math> as slope to the respective <span class="html-italic">x</span>-axis. The support reactions are <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi>x</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>F</mi> <mi>y</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>M</mi> <mi>z</mi> </msub> </mrow> </semantics></math> and the internal forces are <math display="inline"><semantics> <msub> <mi>q</mi> <mi>x</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>m</mi> <mi>z</mi> </msub> </semantics></math>, see (<a href="#FD7-sensors-19-03892" class="html-disp-formula">7</a>). The flow velocity profile is characterized by <math display="inline"><semantics> <mrow> <mi>v</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and the maximum flow velocity <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math> whereby the fluid properties are given by the density <math display="inline"><semantics> <msub> <mi>ρ</mi> <mi>f</mi> </msub> </semantics></math> and the kinematic viscosity <math display="inline"><semantics> <mi>ν</mi> </semantics></math>.</p> "> Figure 4
<p>In the <b>left</b> picture, the sensor shaft D03 (orange) is clamped by a miniature jaw chuck (blue) and mounted onto the force sensor (yellow) while it stays inside a flow (black arrows). On the <b>right</b>, the sensor shafts D03, D4, D5 and D6 are depicted, structural details in <a href="#sensors-19-03892-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>Drag coefficient <math display="inline"><semantics> <msub> <mi>c</mi> <mi>D</mi> </msub> </semantics></math> for: (<b>a</b>) D4 (blue), D5 (red), D6 (yellow) and (<b>b</b>) D03 in dependence on the Reynolds numbers according to <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mover accent="true"> <mi>v</mi> <mo>˜</mo> </mover> <mfrac> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">s</mi> </mfrac> <mo>,</mo> <mspace width="0.166667em"/> <mover accent="true"> <mi>v</mi> <mo>˜</mo> </mover> <mo>∈</mo> <mfenced separators="" open="[" close="]"> <mn>0</mn> <mo>,</mo> <mn>20</mn> </mfenced> </mrow> </semantics></math>. The dashed line in (<b>a</b>) corresponds to a value of 0.65 and the one in (<b>b</b>) to 0.75. (<b>c</b>) shows the tip position with <math display="inline"><semantics> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>L</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (blue) and <math display="inline"><semantics> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>L</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (red) and corresponding curve fits (black solid line) of D03 for <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mover accent="true"> <mi>v</mi> <mo>˜</mo> </mover> <mfrac> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">s</mi> </mfrac> <mo>,</mo> <mspace width="0.166667em"/> <mover accent="true"> <mi>v</mi> <mo>˜</mo> </mover> <mo>∈</mo> <mfenced separators="" open="[" close="]"> <mn>0</mn> <mo>,</mo> <mn>20</mn> </mfenced> </mrow> </semantics></math>.</p> "> Figure 6
<p>The experimental data sets for D4 (blue), D5 (red) and D6 (yellow) and the simulated data (black solid lines) are illustrated for the support reactions: (<b>a</b>) <math display="inline"><semantics> <msub> <mi>F</mi> <mi>x</mi> </msub> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <msub> <mi>F</mi> <mi>y</mi> </msub> </semantics></math> and (<b>c</b>) <math display="inline"><semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics></math>; in dependence on the maximum velocity <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math>.</p> "> Figure 7
<p>(<b>a</b>) The flow velocity profile <math display="inline"><semantics> <mrow> <mi>v</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (blue) is qualitatively shown for <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>20</mn> <mspace width="0.166667em"/> <mfrac> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">s</mi> </mfrac> </mrow> </semantics></math> and the deformed shapes of the shaft D03 for <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mover accent="true"> <mi>v</mi> <mo>˜</mo> </mover> <mfrac> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">s</mi> </mfrac> <mo>,</mo> <mspace width="0.166667em"/> <mover accent="true"> <mi>v</mi> <mo>˜</mo> </mover> <mo>∈</mo> <mfenced separators="" open="{" close="}"> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> </mfenced> </mrow> </semantics></math> in experiment (red) and simulation (black solid line). Support reactions in experiment (<b>b</b>) <math display="inline"><semantics> <msub> <mi>F</mi> <mi>x</mi> </msub> </semantics></math> (blue), <math display="inline"><semantics> <msub> <mi>F</mi> <mi>y</mi> </msub> </semantics></math> (yellow) and (<b>c</b>) <math display="inline"><semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics></math> (blue); each in dependence on the flow velocity <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math> and corresponding simulations (black solid lines).</p> "> Figure 8
<p>(<b>a</b>) The calculated velocity <math display="inline"><semantics> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>c</mi> </mrow> </msub> </semantics></math> is compared to the measured one <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math>: D03 (magenta), D4 (blue), D5 (red), (D6) yellow. The black line corresponds to the original <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math>. (<b>b</b>) According to (<b>a</b>), the error <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>v</mi> </mrow> </semantics></math> is calculated by <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>v</mi> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>−</mo> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 9
<p>(<b>a</b>) The qualitative flow velocity profile <math display="inline"><semantics> <mrow> <mi>v</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (blue) and the deformed shapes are shown for <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.06</mn> <mspace width="0.166667em"/> <mfrac> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">s</mi> </mfrac> </mrow> </semantics></math>. Change of the support reactions (<b>b</b>) <math display="inline"><semantics> <msub> <mi>F</mi> <mi>x</mi> </msub> </semantics></math> and (<b>c</b>) <math display="inline"><semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics></math> in dependence on the flow velocity <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math>.</p> "> Figure 10
<p>(<b>a</b>) The qualitative flow velocity profile <math display="inline"><semantics> <mrow> <mi>v</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (blue) and the deformed shapes are shown for <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1.25</mn> <mspace width="0.166667em"/> <mfrac> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">s</mi> </mfrac> </mrow> </semantics></math>. Change of the support reactions (<b>b</b>) <math display="inline"><semantics> <msub> <mi>F</mi> <mi>x</mi> </msub> </semantics></math> and (<b>c</b>) <math display="inline"><semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics></math> in dependence on the flow velocity <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math>.</p> "> Figure 11
<p>(<b>a</b>) The flow velocity profile <math display="inline"><semantics> <mrow> <mi>v</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (blue) is qualitatively shown for <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>60</mn> <mspace width="0.166667em"/> <mfrac> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">s</mi> </mfrac> </mrow> </semantics></math> and the deformed shapes for <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mover accent="true"> <mi>v</mi> <mo>˜</mo> </mover> <mfrac> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">s</mi> </mfrac> <mo>,</mo> <mspace width="0.166667em"/> <mover accent="true"> <mi>v</mi> <mo>˜</mo> </mover> <mo>∈</mo> <mfenced separators="" open="{" close="}"> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>40</mn> <mo>,</mo> <mn>60</mn> </mfenced> </mrow> </semantics></math>. Change of the support reactions (<b>b</b>) <math display="inline"><semantics> <msub> <mi>F</mi> <mi>x</mi> </msub> </semantics></math> and (<b>c</b>) <math display="inline"><semantics> <msub> <mi>M</mi> <mi>z</mi> </msub> </semantics></math> in dependence on the flow velocity <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math>. (<b>d</b>) The drag force <math display="inline"><semantics> <msub> <mi>Q</mi> <mi>D</mi> </msub> </semantics></math> along the arclength <span class="html-italic">s</span> of the sensor shaft for <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math> according to (<b>a</b>) excluding <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> <mspace width="0.166667em"/> <mfrac> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">s</mi> </mfrac> </mrow> </semantics></math>. (<b>e</b>) The projected obstruction area <math display="inline"><semantics> <msub> <mi>A</mi> <mo>⊥</mo> </msub> </semantics></math> for different <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling & Simulation
2.2. Experiment
3. Results
3.1. Proof of Concept and Simulation
3.2. Application Examples
4. Discussion
In short, faced with a given force, it is cheaper (and probably safer) to accept a fair amount of deformation — better bent than broken.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sheverev, V.; Stepaniuk, V.; Narang, A.S. Principles of Drag Force Flow Sensor. In Handbook of Pharmaceutical Wet Granulation; Academic Press: Cambridge, MA, USA, 2019; pp. 513–538. [Google Scholar]
- Bleckmann, H.; Mogdans, J.; Coombs, S.L. Flow Sensing in Air and Water: Behavioral, Neural and Engineering Principles of Operation; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Birdwell, J.A.; Solomon, J.H.; Thajchayapong, M.; Taylor, M.A.; Cheely, M.; Towal, R.B.; Conradt, J.; Hartmann, M.J.Z. Biomechanical Models for Radial Distance Determination by the Rat Vibrissal System. J. Neurophysiol. 2007, 98, 2439–2455. [Google Scholar] [CrossRef] [PubMed]
- Neimark, M.A.; Andermann, M.L.; Hopfield, J.J.; Moore, C.I. Vibrissa Resonance as a Transduction Mechanism for Tactile Encoding. J. Neurosci. 2003, 23, 6499–6509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prescott, T.; Pearson, M.; Mitchinson, B.; Sullivan, J.; Charles, W.; Pipe, A. Whisking with robots: From Rat Vibrissae to Biomimetic Technology for Active Touch. IEEE Robot. Automat. Mag. 2009, 16, 42–50. [Google Scholar] [CrossRef]
- Scharff, M.; Rivera Campos, R.A.; Merker, L.; Alencastre, J.H.; Behn, C.; Zimmermann, K. Flow Detection using an Artificial Vibrissa-Like Sensor—Simulations and Experiments. In Proceedings of the 18th International Conference on Mechatronics-Mechatronika (ME), Brno, Czech Republic, 5–7 December 2018. [Google Scholar]
- Brecht, M.; Preilowski, B.; Merzenich, M.M. Functional Architecture of the Mystacial Vibrissae. Behav. Brain Res. 1997, 84, 1792–1799. [Google Scholar] [CrossRef]
- Dörfl, J. The Musculature of the Mystacial Vibrissae of the White Mouse. J. Anat. 1982, 135, 147–154. [Google Scholar] [PubMed]
- Voges, D.; Carl, K.; Klauer, G.J.; Uhlig, R.; Schilling, C.; Behn, C.; Witte, H. Structural Characterization of the Whisker System of the Rat. IEEE Sens. J. 2012, 12, 332–339. [Google Scholar] [CrossRef]
- Rice, F.L.; Mance, A.; Munger, B.L. A Comparative Light Microscopic Analysis of the Sensory Innervation of the Mystacial Pad. I. Innervation of Vibrissal Follicle-Sinus Complexes. Scholarpedia 1986, 252, 154–174. [Google Scholar] [CrossRef] [PubMed]
- Zucker, E.; Welker, W.I. Coding of Somatic Sensory Input by Vibrissae Neurons in the Rat’s Trigeminal Ganglion. Brain Res. 1969, 12, 138–156. [Google Scholar] [CrossRef]
- Campagner, D.; Evans, M.H.; Loft, M.S.E.; Petersen, R.S. What the Whiskers Tell the Brain. Neuroscience 2018, 368, 95–108. [Google Scholar] [CrossRef]
- Ebara, S.; Furuta, T.; Kumamoto, K. Vibrissal Mechanoreceptors. Scholarpedia 2017, 12, 32372. [Google Scholar] [CrossRef]
- Ginter, C.C.; DeWitt, T.J.; Fish, F.E.; Marshall, C.D. Fused Traditional and Geometric Morphometrics demonstrate Piniped Whisker Diversity. PLoS ONE 2012, 7, e34481. [Google Scholar] [CrossRef] [PubMed]
- Hans, H.; Jianmin, M.; Alvarado, P.V.Y.; Triantafyllou, M.S. Chemical Composition and Physical Features of Harbor Seal (Phoca Vitulina) vibrissae for Underwater Sensing Application. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Karon Beach, Phuket, Thailand, 7–11 December 2011; pp. 1439–1443. [Google Scholar]
- Dehnhardt, G.; Mauck, B.; Bleckmann, H. Seal Whiskers Detect Water Movements. Nature 1998, 394, 235–236. [Google Scholar] [CrossRef]
- Hanke, W.; Wieskotten, S.; Niesterok, B.; Miersch, L.; Witte, M.; Brede, M.; Leder, A.; Dehnhardt, G. Hydrodynamic Perception in Pinnipeds. In Nature-Inspired Fluid Mechanics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yu, Y.S.W.; Graff, M.M.; Hartmann, M.J.Z. Mechanical Responses of Rat Vibrissae to Airflow. J. Exp. Biol. 2016, 219, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.S.W.; Graff, M.M.; Bresee, C.S.; Man, Y.B.; Hartmann, M.J.Z. Whiskers Aid Anemotaxis in Rats. J. Exp. Biol. 2016, 2, e1600716. [Google Scholar] [CrossRef] [PubMed]
- Hanke, W.; Witte, M.; Miersch, L.; Brede, M.; Oeffner, J.; Michael, M.; Hanke, F.; Leder, A.; Dehnhardt, G. Harbor Seal Vibrissa Morphology Suppresses Vortex-Induced Vibrations. J. Exp. Biol. 2010, 213, 2665–2672. [Google Scholar] [CrossRef] [PubMed]
- Miersch, L.; Hanke, W.; Wieskotten, S.; Hanke, F.D.; Oeffner, J.; Leder, A.; Brede, M.; Witte, M.; Dehnhardt, G. Flow Sensing by Pinniped Whiskers. Philos. Trans. R. Soc. B 2011, 366, 3077–3084. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.T.; Eberhardt, W.C.; Calhoun, B.H.; Mann, K.A.; Mann, D.A.; Maravall, M. Effect of Angle on Flow-Induced Vibrations of Pinniped Vibrissae. PLoS ONE 2013, 8, e69872. [Google Scholar] [CrossRef]
- Blevins, R.D. Flow-Induced Vibration; Publishing Company: Malabar, FL, USA, 1994. [Google Scholar]
- Vogel, S. Drag and Flexibility in Sessile Organisms. Am. Zool. 2015, 24, 37–44. [Google Scholar] [CrossRef]
- Leclercq, T.; de Langre, E. Drag Reduction by Elastic Reconfiguration of Non-Uniform Beams in Non-Uniform Flows. J. Fluids. Struct. 2016, 60, 114–129. [Google Scholar] [CrossRef]
- Alben, S.; Shelley, M.; Zhang, J. Drag Reduction through Self-Similar Bending of a Flexible Body. Nature 2002, 420, 479–481. [Google Scholar] [CrossRef]
- Maschmann, M.R.; Dickinson, B.; Ehlert, G.; Baur, J.W. Force Sensitive Carbon Nanotube Arrays for Biologically Inspired Airflow Sensing. Smart Mater. Struct. 2012, 21, 094024. [Google Scholar] [CrossRef]
- Chapman, J.A.; Wilson, B.N.; Gulliver, J.S. Drag Force Parameters of Rigid and Flexible Vegetal Elements. Water Resour. Res. 2015, 51, 3292–3302. [Google Scholar] [CrossRef]
- de Langre, E. Effects of Wind on Plants. Annu. Rev. Fluid Mech. 2008, 40, 141–168. [Google Scholar] [CrossRef] [Green Version]
- Barth, F. A Spider’s Tactile Hairs. Scholarpedia 2015, 10, 7267. [Google Scholar] [CrossRef]
- Asadniaand, M.; Kottapalli, A.G.P.; Karavitaki, K.D.; Warkiani, M.E.; Miao, J.; Corey, D.P.; Triantafyllou, M. From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance. Sci. Rep. 2016, 6, 32955. [Google Scholar] [CrossRef] [PubMed]
- Kottapalli, A.G.P.; Asadnia, M.; Miao, J.M.; Triantafyllou, M.S. Harbor seal whisker inspired flow sensors to reduce vortex-induced vibrations. In Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015. [Google Scholar]
- Große, S.; Schröder, W. Deflection-based Flow Field Sensors—Examples and Requirements. In Frontiers in Sensing; Springer: Vienna, Austria, 2012; pp. 393–403. [Google Scholar]
- Beem, H.; Hildner, M.; Triantafyllou, M. Calibration and Validation of a Harbor Seal Whisker-Inspired Flow Sensor. Smart Mater. Struct. 2013, 22, 014012. [Google Scholar] [CrossRef]
- Solomon, J.H.; Hartmann, M.J.Z. Robotic Whiskers used to Sense Features. Nature 2006, 443, 525. [Google Scholar] [CrossRef]
- Tuna, C.; Jones, D.L.; Kamalabadi, F. Tactile Soft-Sparse Mean Fluid-Flow Imaging with a Robotic Whisker Array. Bioinspir. Biomim. 2015, 10, 046018. [Google Scholar] [CrossRef]
- Eberhardt, W.C.; Wakefield, B.F.; Murphy, C.T.; Casey, C.; Shakhsheer, Y.; Calhoun, B.H.; Reichmuth, C. Development of an Artificial Sensor for Hydrodynamic Detection Inspired by a Seal’s Whisker Array. Bioinspir. Biomim. 2016, 11, 056011. [Google Scholar] [CrossRef]
- Su, W.; Reich, G.W. Geometric Scaling of Artificial Hair Sensors for Flow Measurement under different Conditions. Smart Mater. Struct. 2017, 26, 037002. [Google Scholar] [CrossRef]
- Rooney, T.; Pearson, M.J.; Pipe, A.G. Measuring the Local Viscosity and Velocity of Fluids using a Biomimetic Tactile Whisker. In Proceedings of the Biomimetic and Biohybrid Systems, Barcelona, Spain, 28–31 July 2015. [Google Scholar]
- Valdivia y Alvarado, P.; Subramaniam, V.; Triantafyllou, M. Design of a Bio-Inspired Whisker Sensor for Underwater Applications. In Proceedings of the IEEE SENSORS Proceedings, Taipei, Taiwan, 28–31 October 2012; pp. 1–4. [Google Scholar]
- Hartmann, M.J.Z.; Johnson, N.J.; Assad, R.B.T.C. Mechanical Characteristics of Rat Vibrissae: Resonant Frequencies and Damping in Isolated Whiskers and in the Awake Behaving Animal. J. Neurosci. 2003, 23, 6510–6519. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.M.; Kundu, P.K. Fluid Mechanics; Academic Press: London, UK, 2004. [Google Scholar]
- Williams, C.M.; Kramer, E.M. The Advantages of a Tapered Whisker. PLoS ONE 2010, 5, e8806. [Google Scholar] [CrossRef] [PubMed]
- Spiga, M.; Morino, G.L. A Symmetric Solution for Velocity Profile in Laminar Flow through Rectangular Ducts. Int. J. Heat. Mass. Transf. 1994, 21, 469–475. [Google Scholar] [CrossRef]
- Norberg, C. Fluctuating Lift on a Circular Cylinder: Review and New Measurements. J. Fluids. Struct. 2003, 17, 57–96. [Google Scholar] [CrossRef]
- Boiko, V.M.; Pivovarov, A.A.; Poplavski, S.V. Measurement of Gas Velocity in a High-Gradient Flow, Based on Velocity of Tracer Particles. Combust. Explos. Shock Waves 2013, 49, 548–554. [Google Scholar] [CrossRef]
- Sterbing-D’Angelo, S.; Chadha, M.; Chiu, C.; Falk, B.; Xian, W.; Barcelo, J.; Moss, J.M.Z.C.F. Bat Wing Sensors Support Flight Control. Proc. Natl. Acad. Sci. USA 2011, 108, 11291–11296. [Google Scholar] [CrossRef] [PubMed]
- Merker, L.; Scharff, M.; Zimmermann, K.; Behn, C. Signal Tuning of Observables at the Support of a Vibrissa-like Tactile Sensor in Different Scanning Scenarios. In Proceedings of the 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018. [Google Scholar]
- Claverie, L.N.; Boubenec, Y.; Debrégeas, G.; Prevost, A.M.; Wandersman, E. Whisker Contact Detection of Rodents Based on Slow and Fast Mechanical Inputs. Front. Behav. Neurosci. 2017, 10, 251. [Google Scholar] [CrossRef]
- Marangoni, R.R.; Schleichert, J.; Rahneberg, I.; Mastylo, R.; Manske, E.; Fröhlich, T. Multi-Component Force Measurement in Micromachining. tm-Tech. Mess. 2017, 84, 587–592. [Google Scholar]
Name | L [m] | [m] | [-] | E |
---|---|---|---|---|
D03 | 0.15 | 1 | ||
D4 | 0.15 | 1 | ||
D5 | 0.15 | 1 | ||
D6 | 0.15 | 1 |
0.029 | 0.9 |
0.06 | 997 | 0.04 | ≈2400 |
see [44] | 1.25 | 1.2 | ≈2200 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scharff, M.; Schorr, P.; Becker, T.; Resagk, C.; Alencastre Miranda, J.H.; Behn, C. An Artificial Vibrissa-Like Sensor for Detection of Flows. Sensors 2019, 19, 3892. https://doi.org/10.3390/s19183892
Scharff M, Schorr P, Becker T, Resagk C, Alencastre Miranda JH, Behn C. An Artificial Vibrissa-Like Sensor for Detection of Flows. Sensors. 2019; 19(18):3892. https://doi.org/10.3390/s19183892
Chicago/Turabian StyleScharff, Moritz, Philipp Schorr, Tatiana Becker, Christian Resagk, Jorge H. Alencastre Miranda, and Carsten Behn. 2019. "An Artificial Vibrissa-Like Sensor for Detection of Flows" Sensors 19, no. 18: 3892. https://doi.org/10.3390/s19183892
APA StyleScharff, M., Schorr, P., Becker, T., Resagk, C., Alencastre Miranda, J. H., & Behn, C. (2019). An Artificial Vibrissa-Like Sensor for Detection of Flows. Sensors, 19(18), 3892. https://doi.org/10.3390/s19183892